Skip to main content
Log in

Analysis of a new composite material for watercraft manufacturing

  • Published:
Journal of Marine Science and Application Aims and scope Submit manuscript

Abstract

In this paper, we investigate the properties of an alternative material for use in marine engineering, namely a rigid and light sandwich-structured composite made of expanded polystyrene and fiberglass. Not only does this material have an improved section modulus, but it is also inexpensive, light, easy to manipulate, and commercially available in various sizes. Using a computer program based on the finite element method, we calculated the hogging and sagging stresses and strains acting on a prismatic boat model composed of this material, and determined the minimum sizes and maximum permissible stresses to avoid deformation. Finally, we calculated the structural weight of the resulting vessel for comparison with another structure of comparable dimensions constructed from the commonly used core material Divinycell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atkinson R, 1997. Innovative uses for sandwich constructions. Reinforced Plastics, 41(2), 30–33.

    Article  Google Scholar 

  • Bucalem ML, Bathe KJ, 2011. The mechanics of solids and structures–hierarchical modeling and the finite element solution. Germany Springer.

    Book  MATH  Google Scholar 

  • Cerracchioa P, Gherlonea M, Di Sciuvaa M, Tesslerb A, 2015. A novel approach for displacement and stress monitoring of sandwich structures based on the inverse finite element method. Composite Structures, 127, 69–76. DOI: 10.1016/j.compstruct.2015.02.081

    Article  Google Scholar 

  • Chalmers DW, 1994. The potential for the use of composite materials in marine structures. Marine Structures, 7(2-5), 441–456. DOI: 10.1016/0951-8339(94)90034-5

    Article  Google Scholar 

  • Cook RD, 1974. Concepts and Applications of Finite Element Analysis. John Wiley and Sons, Inc, NJ.

    Google Scholar 

  • Craugh LE, Kwon YW, 2013. Coupled finite element and cellular automata methods for analysis of composite structures with fluid–structure interaction. Composite Structures, 102, 124–137. DOI: 10.1016/j.compstruct.2013.02.021

    Article  Google Scholar 

  • Critchfield MO, Judy TD, Kurzweil AD, 1994. Low-Cost Design and Fabrication of Composite Ship Structures. Marine Structures, 7, 475–494. DOI: 10.1016/0951-8339(94)90036-1

    Article  Google Scholar 

  • Crupi V, Epasto G, Guglielmino E, 2013. Crupi comparison of aluminum sandwiches for lightweight ship structures: Honeycomb vs. foam. Marine Structures, 30, 74–96. DOI: 10.1016/j.marstruc.2012.11.002

    Article  Google Scholar 

  • Davies P, Choqueuse D, Bigourdan B, 1994. Test-finite element correlations for non-woven fibre-reinforced composites and sandwich panels. Marine Structures, 7, 345–363. DOI: 10.1016/0951-8339(94)90030-2

    Article  Google Scholar 

  • Eamon CD, Rais-Rohani M, 2009. Integrated reliability and sizing optimization of a large composite structure. Marine Structures, 22, 315–334. DOI: 10.1016/j.marstruc.2008.03.001 http://boatbuildercentral.com/products.php?cat=10; Consulted March 2015.

    Article  Google Scholar 

  • Kimpara I, 1991. Use of advanced composite materials in marine vehicles. Marine Structures, 4(2), 117–127. DOI: 10.1016/0951-8339(91)90016-5

    Article  Google Scholar 

  • Lee KW, Chong TH, Park GJ, 2003. Development of a methodology for a simplified finite element model and optimum design. Computers and Structures, 81, 1449–1460. DOI: 10.1016/S0045-7949(03)00084-1

    Article  Google Scholar 

  • Mouritz AP, Gellert E, Burchill P, Challis K, 2001. Review of advanced composite structures for naval ships and submarines. Composite Structures, 53(1), 21–42. DOI: 10.1016/S0263-8223(00)00175-6

    Article  Google Scholar 

  • Mouring SE, 1999. Buckling and post buckling of composite ship panels stiffened with preform frames. Ocean Engineering, 26, 793–803. DOI: 10.1016/S0029-8018(98)00025-0

    Article  Google Scholar 

  • Pei Z, Iijima K, Fujikubo M, Tanaka S, Okazawa S, Yao T, 2015. Simulation on progressive collapse behavior of whole ship model under extreme waves using idealized structural unit method. Marine Structures, 40, 104–133. DOI: 10.1016/j.marstruc.2014.11.002

    Article  Google Scholar 

  • Rajendran R, Lee JM, 2009. Blast loaded plates. Marine Structures, 22, 99–127. DOI: 10.1016/j.marstruc.2008.04.001

    Article  Google Scholar 

  • Romanoff J, Varsta P, 2007. Bending response of web-core sandwich plates. Composite Structures, 81(2), 292–302. DOI: 10.1016/j.compstruct.2006.08.021

    Article  Google Scholar 

  • SAP2000, 2015. Integrated software for structural analysis and design, analysis reference manual. Computer and Structures, Inc., Berkeley, CA.

  • Scott RJ, 1996. Fiberglass boat design and construction. Second edition. SNAME, NJ.

    Google Scholar 

  • Shu Z, Moan T, 2011. Reliability analysis of a bulk carrier in ultimate limit state under combined global and local loads in the hogging and alternate hold loading condition. Marine Structures, 24, 1–22. DOI: 10.1016/j.marstruc.2010.11.002

    Article  Google Scholar 

  • Stenius I, Rosén A, Kuttenkeuler J, 2011. On structural design of energy efficient small high-speed craft. Marine Structures, 24, 43–59. DOI: 10.1016/j.marstruc.2011.01.001

    Article  Google Scholar 

  • Temple DW, Collette MD, 2015. Minimizing lifetime structural costs: Optimizing for production and maintenance under service life uncertainty. Marine Structures, 40, 60–72. DOI: 10.1016/j.marstruc.2014.10.006

    Article  Google Scholar 

  • Torabizadeh MA, 2013. Tensile, compressive and shear properties of unidirectional glass/Epoxy composites subjected to mechanical loading and low temperature services. Indian Journal of Engineering and Material Sciences, 20, 299–309.

    Google Scholar 

  • Townsend NC, Coe TE, Wilson PA, Shenoi RA, 2012. High speed marine craft motion mitigation using flexible hull design. Ocean Engineering, 42, 126–134. DOI: 10.1016/j.oceaneng.2012.01.00

    Article  Google Scholar 

  • Yang N, Das PK, Blake JIR, Sobey AJ, Shenoi RA, 2013. The application of reliability methods in the design of tophat stiffened composite panels under in-plane loading. Marine Structures, 32, 68–83. DOI: 10.1016/j.marstruc.2013.03.002

    Article  Google Scholar 

  • Yu Z, Hu Z, Wang G, 2015. Plastic mechanism analysis of structural performances for stiffeners on bottom longitudinal web girders during a shoal grounding accident. Marine Structures, 40, 134–158. DOI: 10.1016/j.marstruc.2014.11.001

    Article  Google Scholar 

  • Zhu S, Moan T, 2014. Nonlinear effects from wave-induced maximum vertical bending moment on a flexible ultra-large containership model in severe head and oblique seas. Marine Structures, 35, 1–25. DOI: 10.1016/j.marstruc.2013.06.007

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Wahrhaftig.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wahrhaftig, A., Ribeiro, H., Nascimento, A. et al. Analysis of a new composite material for watercraft manufacturing. J. Marine. Sci. Appl. 15, 336–342 (2016). https://doi.org/10.1007/s11804-016-1364-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11804-016-1364-8

Keywords

Navigation