Skip to main content
Log in

Sea surface effects on sound scattering in the Persian Gulf region based on empirical relations

  • Published:
Journal of Marine Science and Application Aims and scope Submit manuscript

Abstract

In this paper, sound scattering from the sea surface in the Persian Gulf region is investigated. Chapman-Harris and Ogden-Erskine empirical relations coupled with perturbation theory are implemented. Based on the Ogden and Erskine’s experiments, sound scattering from the sea surface has three different regimes in which two mechanisms of surface roughness and subsurface bubble clouds are involved. Ogden-Erskine’s scattering relation which consists of perturbation theory and Chapman-Harris’s scattering terms are verified by the experimental data of Critical Sea Tests 7. Subsequently, wind speed in the Persian Gulf is provided based on three data bases of Arzanah station, ERA40, and PERGOS. Accordingly, surface scattering strength in the Persian Gulf region is calculated at different grazing angles, frequencies and provided wind speeds. Based on the resulted values of scattering strength, scattered intensity from the sea surface is also studied. These studies indicate that both scattering strength and scattered intensity generally increase as grazing angle, frequency and wind speed increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ainslie MA (2005). Effect of wind-generated bubbles on fixed range acoustic attenuation in shallow water at 1–4 kHz. J. Acoust. Soc. Amer., 118 (6), 3513–3523. DOI: 10.1121/1.2114527

    Article  Google Scholar 

  • Akal T, Berkson JM (1986). Ocean seismo-acoustics: low-Frequency underwater acoustics. NATO Conference Series IV, Marine Sciences, Vol. 16. Plenum, New York.

  • Andreeva IB, Volkova AV, Galybin NN (1980). Backscattering of sound by the sea surface at small grazing angles. Sov. Phys. Acoust., 26, 265–268.

    Google Scholar 

  • Bass FG (1960). Boundary conditions for the average electromagnetic field on a surface with random irregularities and with impedance fluctuations. Izv. Vuzov, Radio Fizika, 3, 72–78.

    Google Scholar 

  • Brekhovskikh LM, Lysanov YP (2003). Fundamentals of Ocean Acoustics. Press, Springer.

    Google Scholar 

  • Brown MV, and Saenger RA (1972). Bi-static backscattering of low-frequency underwater sound from the ocean surface. J. Acoust. Soc. Am., 52, 944–960. DOI: 10.1121/1.1913201

    Article  Google Scholar 

  • Calvo DC, Nicholas M, Orris GJ (2013). Experimental verification of enhanced sound transmission from water to air at low frequencies. J. Acoust. Soc. Am., 134 (5), 3403–3408. DOI: 10.1121/1.4822478

    Article  Google Scholar 

  • Chapman RP, Harris JH (1962). Surface backscattering strengths measured with explosive sound sources. J. Acoust. Soc. Am., 34, 1592–1597. DOI: 10.1121/1.1909057

    Article  Google Scholar 

  • Chapman RP, Scott HD (1964) Surface backscattering strengths measured over an extended range of frequencies and grazing angles. J. Acoust. Soc. Am., 36, 1735–1737. DOI: 10.1121/1.1919274

    Article  Google Scholar 

  • Deane GB, Preisig JC, Lavery AC (2013). The suspension of large bubbles near the sea surface by turbulence and their role in absorbing forward-scattered sound.IEEE J. Ocean. Eng., 38 (4). DOI: 10.1109/JOE.2013.2257573

    Google Scholar 

  • Diachok O (1999). Effects of absorptivity due to fish on transmission loss in shallow water. J. Acoust. Soc. Amer., 105(4), 2107–2128. DOI: 10.1121/1.417625 Dol HS, Colin MEGD

    Article  Google Scholar 

  • Ainslie MA, van Walree PA, Janmaat J (2013). Simulation of an underwater acoustic communication channel characterized by wind-generated surface waves and bubbles. IEEE J. Ocean. Eng., 38(4). DOI:10.1109/JOE2013.2278931.

    Google Scholar 

  • Duro V, Rajaona DR, Decultot D, Maze G (2011). Experimental study of sound propagation trough bubbly water: comparison with optical measurements. IEEE J. Ocean. Eng., 36 (1), 114–125. DOI: 10.1109/JOE.2010.2096971

    Article  Google Scholar 

  • Eckart C (1953). The scattering of sound from the sea surface. J. Acoust. Soc. Am., 25 (3), 566–570. DOI: 10.1121/1.1907123

    Article  MathSciNet  Google Scholar 

  • ECMWF website (2009). http://www.ECMWF.int/products/data.

  • Eggen TH, Baggeroer AB, Preisig JC (2000). Communication over Doppler spread channels—Part I: Channel and receiver presentation. IEEE J. Ocean. Eng., 25 (1), 62–71. DOI: 10.1109/48.820737

    Article  Google Scholar 

  • Eller AI (1984). Findings and recommendations of the surface loss modelworking group: final report, 1984. Nav. Ocean Res. Devel. Activity, Tech.Note 279.

    Google Scholar 

  • Etter PC (2003). Underwater acoustic modeling and simulation. Third ed., Spon Press, London and New York.

    Google Scholar 

  • Farmer DM, Deane GB, Vagle S (2001). The influence of bubble clouds on acoustic propagation in the surf zone. IEEE J. Ocean. Eng., 26(1), 113–124. DOI: 10.1109/48.917943

    Article  Google Scholar 

  • Fortuin L (1970). Survey of literature on reflection and scattering of sound waves at the sea surface. J. Acoust. Soc. Am., 47, 1209–1228. DOI: 10.1121/1.1912022

    Article  Google Scholar 

  • Frisk GV (1994). Ocean and seabed acoustics: A theory of wave propagation. PTR Prentice-Hall, Englewood Cliffs, USA.

    Google Scholar 

  • Ghadimi P, Bolghasi A, Feizi CMA (2014). acoustic simulation of scattering sound from a more realistic sea surface: consideration of two practical underwater sound sources. Journal of the Brazilian Society of Mechanical Sciences and Engineering. DOI: 10.1007/s40430-014-0285-1

    Google Scholar 

  • Godin OA (2008a). Sound transmission through water–air interfaces: new insights into an old problem. Contemp. Phys., 49(2), 105–123. DOI: 10.1080/00107510802090415

    Article  Google Scholar 

  • Godin OA (2008b). Low-frequency sound transmission through a gas-liquid interface. J. Acoust. Soc. Am., 123(4), 1866–1879. DOI: 10.1121/1.2874631

    Article  Google Scholar 

  • Golshani A (2010). Wave properties in Persian Gulf according to SWAN model. Journal of Marine Engineering, 6(12), 73–87.(in Persian)

    Google Scholar 

  • Hall MV (1989). A comprehensive model of wind-generated bubbles in the ocean and predictions of the effects on sound propagation at frequencies up to 40 kHz. J. Acoust. Soc. Am., 86, 1103–1117. DOI: 10.1121/1.398102

    Article  Google Scholar 

  • Holliday DV, Pieper RE, Klepple GS (1995). Bioacoustical oceanography at high frequencies. ICES J. Mar. Sci., 52 (3-4), 279–296. DOI: 10.1016/1054-3139

    Article  Google Scholar 

  • Huang SH, Tsao J, Yang TC, Cheng SW (2013). Model-based signal subspace channel tracking for correlated underwater acoustic communication channels. IEEE J. Ocean. Eng., DOI: 10.1109/ JOE.2013.2251808.

    Google Scholar 

  • Jornet JM, Stojanovic M, Zorzi M (2010). On joint frequency and power allocation in a cross-layer protocol for underwater acoustic networks. IEEE J. Ocean. Eng., 35(4), 936–947. DOI: 10.1109/JOE.2010.2080410

    Article  Google Scholar 

  • Karjadi EA, Badiey M, Kirby JT, Bayindir C (2012). The effects of surface gravity waves on high-frequency acoustic propagation in shallow water. IEEE J. Ocean. Eng., 37(1), 112–121. DOI: 10.1109/JOE.2011.2168670

    Article  Google Scholar 

  • Kinsler LE, Frey AR, Coppens AB, Sanders JV (1982). Fundamentals of Acoustics. 3rd ed., John Wiley & Sons, New York.

    Google Scholar 

  • Kuo EYT (1988). Sea surface scattering and propagation loss: review, update, and new predictions. IEEE J. Ocean. Eng., 13, 229–234. DOI: 10.1109/48.9235

    Article  Google Scholar 

  • Leighton TG (1994). The acoustic bubble. Academic Press San Diego.

    Google Scholar 

  • Marsh HW (1961). Exact solution of wave scattering by irregular surfaces. J. Acoust. Soc. Am., 33, 330–333.

    Article  MathSciNet  Google Scholar 

  • McDaniel ST (1993). Sea surface reverberation: a review. J. Acoust. Soc. Am., 94(4), 1905–1922. DOI: 10.1121/1.407514

    Article  MathSciNet  Google Scholar 

  • Medwin H, Clay CS (1998). Fundamentals of Acoustical Oceanography. 2nd ed., Academic Press, Boston.

    Google Scholar 

  • NOAA website (2009). http://www.cdc.noaa.gov/data/.

  • Ocean Weather website (2009). http://www.oceanweather.com/metocean/.

  • Ogden PM, Erskine FT (1994a). Surface scattering measurements using broadband in the explosive charges Critical Sea Test experiments. J. Acoust. Soc. Am., 95, 746–761. DOI: 10.1121/1.411300

    Article  Google Scholar 

  • Ogden PM, Erskine FT (1994b). Surface scattering measurements using broadband in the explosive charges Critical Sea Test 7 experiments. J. Acoust. Soc. Am., 96, 2908–2920. DOI: 10.1121/1.411300

    Article  Google Scholar 

  • PODAAC QuikSCAT website (2009). http://podaac.jpl.nasa.gov/quikscat/.

  • Polprasert C, Ritcey JA, Stojanovic M (2011). Capacity of OFDM systems over fading underwater acoustic channels. IEEE J. Ocean. Eng., 36(4), 514–524. DOI: 10.1109/JOE.2011.2167071

    Article  Google Scholar 

  • Porter MB (1993). Acoustic models and sonar systems. IEEE J. Ocean. Eng., 18(4), 425–437. DOI: 10.1109/48.262293

    Article  Google Scholar 

  • Roux P, Culver RL, Walker S (2010). Application of the coherent-to-incoherent intensity ratio to estimation of ocean surface roughness from high-frequency, shallow-water propagation measurements. J. Acoust. Soc. Amer., 127(3), 1258–1266. DOI: 10.1121/1.3294493

    Article  Google Scholar 

  • Sharif BS, Neasham J, Hinton OR, Adams AE (2000). A computationally efficient Doppler compensation system for underwater acoustic communications. IEEE J. Ocean. Eng., 25(1), 52–61. DOI: 10.1109/48.820736

    Article  Google Scholar 

  • Song A, Badiey M, Newhall AE, Lynch JF, DeFerrari HA, Katsnelson BG (2010). Passive time reversal acoustic communications through shallow-water internal waves. IEEE J. Ocean. Eng., 35(4), 756–765. DOI: 10.1109/JOE.2010.2060530

    Article  Google Scholar 

  • Urick RJ, Hoover RM (1956). Backscattering of Sound from the Sea Surface: Its Measurement, Causes, and Application to the Prediction of Reverberation Levels. J. Acoust. Soc. Am., 28, 1038–1043. DOI: 10.1121/1.1908547

    Article  Google Scholar 

  • Urick RJ (1979). Sound Propagation in the Sea. US Government Printing Office, Washington, DC.

    Google Scholar 

  • van Walree PA (2013). Propagation and scattering effects in underwater acoustic communication channels. IEEE J. Ocean. Eng., 38, 614–631. DOI: 10.1109/JOE.2013.2278913

    Article  Google Scholar 

  • van Moll CAM, Ainslie MA, van Vossen R (2009). A simple and accurate formula for the absorption of sound in seawater. IEEE J. Ocean. Eng., 34(4), 610–616. DOI: 10.1109/JOE.2009.2027800.

    Article  Google Scholar 

  • Yang TC (2012). Properties of underwater acoustic communication channels in shallow water. J. Acoust. Soc. Amer., 131(1), 129–145. DOI: 10.1121/1.3664053

    Article  Google Scholar 

  • Yerramalli S, Mitra U (2011). Optimal resampling of OFDM signals for multiscale-multilag underwater acoustic channels. IEEE J. Ocean. Eng., 36(1), 126–138. DOI: 10.1109/JOE.2010.2093752

    Article  Google Scholar 

  • Zhang Z (2011). Spectral Decomposition Using S-transform for Hydrocarbon Detection and Filtering. Master thesis, Texas A&M University, College Station, USA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parviz Ghadimi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghadimi, P., Bolghasi, A. & Feizi Chekab, M.A. Sea surface effects on sound scattering in the Persian Gulf region based on empirical relations. J. Marine. Sci. Appl. 14, 113–125 (2015). https://doi.org/10.1007/s11804-015-1306-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11804-015-1306-x

Keywords

Navigation