Skip to main content
Log in

Numerical prediction of added resistance and vertical ship motions in regular head waves

  • Published:
Journal of Marine Science and Application Aims and scope Submit manuscript

Abstract

The numerical prediction of added resistance and vertical ship motions of one ITTC (International Towing Tank Conference) S-175 containership in regular head waves by our own in-house unsteady RANS solver naoe-FOAM-SJTU is presented in this paper. The development of the solver naoe-FOAM-SJTU is based on the open source CFD tool, OpenFOAM. Numerical analysis is focused on the added resistance and vertical ship motions (heave and pitch motions) with four very different wavelengths (0.8L pp λ ≤ 1.5L pp ) in regular head waves. Once the wavelength is near the length of the ship model, the responses of the resistance and ship motions become strongly influenced by nonlinear factors, as a result difficulties within simulations occur. In the paper, a comparison of the experimental results and the nonlinear strip theory was reviewed and based on the findings, the RANS simulations by the solver naoe-FOAM-SJTU were considered competent with the prediction of added resistance and vertical ship motions in a wide range of wave lengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boese P (1970). Eine Einfache Methode zur Berechnung der Wiederstandserhöhung eines Schiffes in Seegang. Institut für Schiffbau der Universität Hamburg, Bericht, 258.

    Google Scholar 

  • Cao HJ, Zha JJ (2011). Numerical simulation of wave run-up around a vertical cylinder. Proceedings of the Twenty-first (2011) International Offshore and Polar Engineering Conference, Maui, Hawaii, USA.

  • Cao HJ, Wan DC (2012). Numerical investigation of extreme wave effects on cylindrical offshore structures. Proceedings of the Twenty-second International Offshore and Polar Engineering Conference (ISOPE), Rhodes, Greece.

  • Carrica PM, Wilson RV (2006). Unsteady RANS simulation of the ship forward speed diffraction problem. Computers & Fluids, 35(6), 545–570.

    Article  MATH  Google Scholar 

  • Carrica PM, Wilson RV (2007). Ship motions using single-phase level set with dynamic overset grids. Computers & Fluids, 36(9), 1415–1433.

    Article  MATH  Google Scholar 

  • Carrica PM, Castro AM (2010). Self-propulsion computations using a speed controller and a discretized propeller with dynamic overset grids. Journal of Marine Science and Technology, 15(4), 316–330.

    Article  Google Scholar 

  • Chen HC, Liu T (2002). Time-domain Simulation of large-amplitude ship roll motions by a Chimera RANS method. International Journal of Offshore and Polar Engineering, 12(3), 206–212.

    Google Scholar 

  • Fonseca N, Soares CG (2004). Experimental investigation of the nonlinear effects on the vertical motions and loads of a containership in regular waves. Journal of Ship Research, 48(2), 118–147.

    Google Scholar 

  • Fonseca N, Soares CG (2005). Comparison between experimental and numerical results of the nonlinear vertical ship motions and loads on a containership in regular waves. International Shipbuilding Progress, 52(1), 57–89.

    Google Scholar 

  • Fujii H, Takahashi T (1975). Experimental study on the resistance increase of a ship in regular oblique waves. Proc. of 14th ITTC, 4, 351–360.

    Google Scholar 

  • Gerritsma J. Beukelman W (1972). Analysis of the resistance increase in waves of a fast cargo ship. International Shipbuilding Progress, 19, 217.

    Google Scholar 

  • ITTC (1978). 15th ITTC Seakeeping Committee Report. Proceeding of the 15th ITTC, The Hague.

  • ITTC (1981). 16th ITTC Seakeeping Committee Report. Proceeding of the 16th ITTC, Leningrad.

  • Journée J (2001). Verification and validation of ship motions program SEAWAY. Delft University of Technology Shiphydromechanics Laboratory, Report1213a.

  • Menter FR (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32(8), 1598–1605.

    Article  Google Scholar 

  • Orihara H, Miyata H (2003). Evaluation of added resistance in regular incident waves by computational fluid dynamics motion simulation using an overlapping grid system. Journal of Marine Science and Technology, 8(2), 47–60.

    Article  Google Scholar 

  • Rhee SH, Stern F (2001). Unsteady RANS method for surface ship boundary layer and wake and wave field. International Journal for Numerical Methods in Fluids, 37(4), 445–478.

    Article  MATH  Google Scholar 

  • Salvesen, N., E. Tuck (1970). Ship motions and sea loads. Trans. SNAME, 78, 250–287.

    Google Scholar 

  • Sato Y, Miyata H (1999). CFD simulation of 3-dimensional motion of a ship in waves: Application to an advancing ship in regular heading waves. Journal of Marine Science and Technology, 4(3), 108–116.

    Article  Google Scholar 

  • Shen ZR, Jiang L (2011). RANS simulations of benchmark ships based on open source code. Proceedings of the Seventh International Workshop on Ship Hydrodynamics (IWSH’2011), Shanghai, China.

  • Shen ZR, Wan DC (2012). RANS computations of added resistance and motions of ship in head waves. Proceedings of Twenty-second(2012) Ocean(Offshore) and Polar Engineering Conference, Rhodes, Greece, ISOPE.

  • Weymouth GD, Wilson RV (2005). Rans computational fluid dynamics predictions of pitch and heave ship motions in head seas. Journal of Ship Research, 49(2), 80–97.

    Google Scholar 

  • Yoshida H, Miyake S (2000). Prediction of seakeeping performance of a ship by rankine source method (Part. 1)-Improvement on the Free Surface Panel Resolution near the Ship. Journal-Kansai Society of Naval Architects Japan, 167–172.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Decheng Wan.

Additional information

Foundation item: Supported by the National Natural Science Foundation of China (Grant No. 50739004 and 11072154)

Haixuan Ye is a graduate student in School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University. His current research field includes computational simulations of the added resistance, force and motion responses of ships when advancing in seaways.

Zhirong Shen is currently a PhD candidate in School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University. His research interests include computational ship hydrodynamics, wave generation method and a 6DoF motion of ship based on OpenFOAM. He is now working on the implementation of overset grid technique into OpenFOAM.

Decheng Wan is a professor of School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, and a distinguished professor of Shanghai Eastern Scholar. His research interests include marine hydrodynamics and computational fluid dynamics, marine numerical wave tank, nonlinear wave theory, fluid-structure interaction, high performance computation on complex flows, etc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, H., Shen, Z. & Wan, D. Numerical prediction of added resistance and vertical ship motions in regular head waves. J. Marine. Sci. Appl. 11, 410–416 (2012). https://doi.org/10.1007/s11804-012-1150-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11804-012-1150-1

Keywords

Navigation