Skip to main content
Log in

Global analysis of a flexible riser

  • Research Papers
  • Published:
Journal of Marine Science and Application Aims and scope Submit manuscript

Abstract

The mechanical performance of a flexible riser is more outstanding than other risers in violent environmental conditions. Based on the lumped mass method, a steep wave flexible riser configuration attached to a Floating Production Storage and Offloading (FPSO) has been applied to a global analysis in order to acquire the static and dynamic behavior of the flexible riser. The riser was divided into a series of straight massless line segments with a node at each end. Only the axial and torsional properties of the line were modeled, while the mass, weight, and buoyancy were all lumped to the nodes. Four different buoyancy module lengths have been made to demonstrate the importance of mode selection, so as to confirm the optimum buoyancy module length. The results in the sensitivity study show that the flexible riser is not very sensitive to the ocean current, and the buoyancy module can reduce the Von Mises stress and improve the mechanical performance of the flexible riser. Shorter buoyancy module length can reduce the riser effective tension in a specific range of the buoyancy module length when other parameters are constant, but it can also increase the maximum curvature of the riser. As a result, all kinds of the riser performances should be taken into account in order to select the most appropriate buoyancy module length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • API SPEC17B (2002). American petroleum institute.

  • API 17J (1999), second edition, Specification for Unbonded Flexible Pipe

  • Bahtui A, Bahai H, Alfano G (2008). A finite element analysis for unbonded flexible risers under torsion. Journal of Offshore Mechanics and Arctic Engineering, vol.130, 041301-1–041301-4.

    Article  Google Scholar 

  • Bai Yong, Bai Qiang (2005). Subsea Pipelines and Risers. Elsevier Ltd, USA, 401–402.

    Book  Google Scholar 

  • Chung JS, Cheng BR (1996). Effects of elastic joints on 3-D nonlinear responses of a deep-ocean pipe: modeling and boundary conditions. International Journal of Offshore and Polar Engineering, 6(3), 203–211

    Google Scholar 

  • Kordkheili SAH, Bahai H (2007). Non-linear finite element static analysis of flexible risers with a touch down boundary condition. Proceedings of the 26th International Conference on Offshore Mechanics and Arctic Engineering, California, USA, 1–5.

  • ORCAFLEX Help File and User Manual, available from www.orcina.com.

  • Tan Zhimin, Quiggin P, Sheldrake T (2009). Time domain simulation of the 3D bending hysteresis behavior of an unbonded flexible riser. Journal of Offshore Mechanics and Arctic Engineering, 131, 031301-1–031301-8.

    Article  Google Scholar 

  • Wang Anjiao, Chen Jiajing (1991). Non-linear dynamic analysis of flexible riser. Ocean Engineering, 9(3), 12–22. (in Chinese)

    Google Scholar 

  • Zeng Jifang (2009). Mechanical behavior and optimum design of ocean flexible riser. Master thesis, Dalian University of Technology, 42–54. (in Chinese)

  • Zhong Li (2007). Mechanics Characteristic Analysis of Deep Water Drilling Riser. Oil Drilling & Production Technology. 29(1), 19–21. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liping Sun.

Additional information

Foundation item: the National Natural Science Fundation of China (No.50879013); China National 111 Project under Grant No. B07019

Liping Sun was born in 1962. She is a professor at Harbin Engineering University. Her current research interests include deepwater technology.

Bo Qi was born in 1986. She is a graduate student of Harbin Engineering University. Her current research interests include drilling risers and flexible risers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, L., Qi, B. Global analysis of a flexible riser. J. Marine. Sci. Appl. 10, 478–484 (2011). https://doi.org/10.1007/s11804-011-1094-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11804-011-1094-x

Keywords

Navigation