Skip to main content
Log in

Development of fragility curves by incorporating new spectral shape indicators and a weighted damage index: case study of steel braced frames in the city of Mashhad, Iran

  • Published:
Earthquake Engineering and Engineering Vibration Aims and scope Submit manuscript

Abstract

In this study, strong ground motion record (SGMR) selection based on Eta (η) as a spectral shape indicator has been investigated as applied to steel braced frame structures. A probabilistic seismic hazard disaggregation analysis for the definition of the target Epsilon (ε) and the target Eta (η) values at different hazard levels is presented, taking into account appropriately selected SGMR’s. Fragility curves are developed for different limit states corresponding to three representative models of typical steel braced frames having significant irregularities in plan, by means of a weighted damage index. The results show that spectral shape indicators have an important effect on the predicted median structural capacities, and also that the parameter η is a more robust predictor of damage than searching for records with appropriate ε values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aslani H and Miranda E (2003), “Probabilistic Assessment of Building Response during Earthquakes,” Proc. Ninth International Conference on Application of Statistics and Probability in Civil Engineering, San Francisco, CA, 2: 1441–8.

    Google Scholar 

  • Azarbakht A, Mousavi M, Nourizadeh M and Shahri M (2014), “Dependence of Correlations between Spectral Accelerations at Multiple Periods on Magnitude and Distance,” Earthquake Engineering & Structural Dynamics, 43(8): 1193–1204.

    Article  Google Scholar 

  • Azarbakht A, Shahri M and Mousavi M (2015), “Reliable Estimation of the Mean Annual Frequency of Collapse by Considering Ground Motion Spectral Shape Effects,” Bulletin of Earthquake Engineering, 13(3): 777–797.

    Article  Google Scholar 

  • Baker JW and Cornell CA (2003), “Uncertainty Specification and Propagation for Loss Estimation Using FOSM Methods,” PEER Report 2003/07, Pacific Earthquake Engineering Research Centre, University of California, Berkeley, CA.

    Google Scholar 

  • Baker JW and Cornell CA (2006), “Spectral Shape, Epsilon and Record Selection,” Earthquake Engineering & Structural Dynamics, 34(10): 1193–1217.

    Article  Google Scholar 

  • Benavent-Climent A (2007), “An Energy-based Damage Model for Seismic Response of Steel Structures,” Earthquake Engineering and Structural Dynamics, 36: 1049–1064.

    Article  Google Scholar 

  • Bojrَquez E, Iervolino I, Reyes-Salazar A and Ruiz SE (2012), “Comparing Vector-valued Intensity Measures for Fragility Analysis of Steel Frames in the Case of Narrow-band Ground Motions,” Engineering Structures, 45: 472–480.

    Article  Google Scholar 

  • Building and Housing Research Center (1999), Iranian Code of Practice for Seismic Resistant Design of Buildings, (Standard No.2800, 2nd edition), Tehran, Iran.

    Google Scholar 

  • Chopra AK (2012), Dynamics of Structures: Theory and Applications to Earthquake Engineering, 4th Edition, Prentice Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  • Cornell A, Zareian F, Krawinkler H and Miranda E (2005), “Prediction of Probability of Collapse,” In H. Krawinkler (Ed.),Van Nuys Hotel Building Testbed Report: Exercising Seismic Performance Assessment, Pacific Earthquake Engineering Research, 4.5.Vol. 2005/11: 85–93.

    Google Scholar 

  • Eads L, Miranda E and Lignos DG (2015), “Average Spectral Acceleration as an Intensity Measure for Collapse Risk Assessment,” Earthquake Engineering and Structural Dynamic, 44(12): 2057–2073.

    Article  Google Scholar 

  • Estekanchi H and Arjomandi K (2007), “Comparison of Damage Indexes in Nonlinear Time History Analysis of Steel Moment Frames,” Asian Journal of Civil Engineering, 8(6): 629–646.

    Google Scholar 

  • Fell BV, Kanvinde AM and Deierlein GG (2010), “Large-scale Testing and Simulation of Earthquake Induced Ultra Low Cycle Fatigue in Bracing Members Subjected to Cyclic Inelastic Buckling,” Technical Report #172, Blume Earthquake Engineering Center, Stanford University, Stanford, CA.

    Google Scholar 

  • FEMA-356 (1997), NEHRP Prestandard and Commentary for the Seismic Rehabilitation of Buildings, Federal Emergency Management Agency, Washington, D.C.

    Google Scholar 

  • Gerami M, Sharbati Y and Sivandi-Pour A (2013), “Nonlinear Seismic Vulnerability Evaluation of Irregular Steel Buildings with Cumulative Damage Indices,” International Journal of Advanced Structural Engineering, 5(1): 1–15.

    Article  Google Scholar 

  • Ghobarah H, Abou-Elfath H and Biddah A (1999), “Response-based Damage Assessment of Structures,” Earthquake Engineering and Structural Dynamic, 28: 79–104.

    Article  Google Scholar 

  • Ghodrati Amiri G, Jalalian M and Razavian Amrei SA (2007), “Derivation of Vulnerability Functions Based on Observational Data for Iran,” Proceedings of the International Symposium on Innovation & Sustainability of Structures in Civil Engineering, Shanghai, China.

    Google Scholar 

  • Gehl P, Seyedi DM and Douglas J (2013), “Vectorvalued Fragility Functions for Seismic Risk Evaluation,” Bulletin of Earthquake Engineering, 11(2): 365–384.

    Article  Google Scholar 

  • Goulet C, Haselton CB, Mitrani-Reiser J, Stewart JP, Taciroglu E and Deierlein G (2006), “Evaluation of the Seismic Performance of a Code-conforming Reinforced Concrete Frame Building-Part I,” Paper NCEE-1576, Proc. 8th National Conference on Earthquake Engineering, San Francisco, CA.

    Google Scholar 

  • Haselton CB and Deierlein GG (2007), “Assessing Seismic Collapse Safety of Modern Reinforced Concrete Frame Buildings,” PEER Report 2007/08, Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA.

    Google Scholar 

  • Hatefi H (2010), “Nonlinear Dynamic Analysis Based on M6.5 Strong Ground Motion Database,” MSc Dissertation, Dept. of Civil Engineering, IIEES, Tehran, Iran.

    Google Scholar 

  • Jafari MA and Hashemi HB (2008), “Experimental Investigation on Seismic Behaviour of Batten Columns,” PhD. Dissertation, International Institute of Earthquake Engineering and Seismology (IIEES), Tehran, Iran.

    Google Scholar 

  • Jalalian M (2006), “Deriving of Empirical Vulnerability Functions for Iran,” MSc Dissertation, University of Technology, Tehran, Iran.

    Google Scholar 

  • Jeong SH and Elnashai AS (2006), “New Three Dimensional Damage Index for RC Buildings with Plan Irregularities”, Journal of Structural Engineering (ASCE), 132(9):1482–1490.

    Article  Google Scholar 

  • Karamanci E and Lignos DG (2014), “Computational Approach for Collapse Assessment of Concentrically Braced Frames in Seismic Regions,” Journal of Structural Engineering, A4014019.

    Google Scholar 

  • Khashaee P (2005), “Damage-based Seismic Design of Structures,” Earthquake Spectra, 21: 371–387.

    Article  Google Scholar 

  • Lu X, Ye L, Lu X, Li M and Ma X (2013), “An Improved Ground Motion Intensity Measure for Super High-rise Buildings,” Science China Technological Sciences, 56(6): 1525–1533.

    Article  Google Scholar 

  • Moghadam AS (2005), “Ground-based Damage Statistics of Buildings that Survived the 2003 Bam, Iran,” Earthquake Spectra, 21(S1): S425–37.

    Article  Google Scholar 

  • Mousavi M, Ghafory-Ashtiany M and Azarbakht A (2011), “A New Indicator of Elastic Spectral Shape for the Reliable Selection of Ground Motion Records,” Earthquake Engineering & Structural Dynamics, 40(12):1403–1416.

    Article  Google Scholar 

  • OpenSees (2007), Open System for Earthquake Engineering Simulation Manual, Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA.

    Google Scholar 

  • Shirian F (2005), “Seismic Rehabilitation of Existing Steel Braced Frames to Achieve Current Seismic Regulations,” MSc Dissertation, Department of Civil Eng, Kharazmi University, Tehran, Iran.

    Google Scholar 

  • Uriz P, Filippou FC and Mahin SA (2008), “Model for Cyclic Inelastic Buckling for Steel Member,” Journal of Structural Engineering, ASCE, 134(4): 619–628.

    Article  Google Scholar 

  • Vamvatsikos D, Jalayer F and Cornell CA (2003), “Application of Incremental Dynamic Analysis to an RC Structure,” Proceedings of the Conference: FIB Symposium, Concrete Structures in Seismic Regions, Athens, Greece.

    Google Scholar 

  • Williams MS and Sexsmith RG (1995), “Seismic Damage Indices for Concrete Structures: a State-of-theart Review,” Earthquake Spectra, 11(2): 319–349.

    Article  Google Scholar 

  • Yakhchalian M, Amiri GG and Nicknam A (2014), “A New Proxy for Ground Motion Selection in Seismic Collapse Assessment of Tall Buildings,” The Structural Design of Tall and Special Buildings, 23: 1275–1293.

    Article  Google Scholar 

  • Yakhchalian M, Nicknam A and Amiri GG (2015), “Optimal Vector-valued Intensity Measure for Seismic Collapse Assessment of Structures,” Earthquake Engineering & Engineering Vibration, 14(1): 37–54.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Kazemi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazemi, H., Ghafory-Ashtiany, M. & Azarbakht, A. Development of fragility curves by incorporating new spectral shape indicators and a weighted damage index: case study of steel braced frames in the city of Mashhad, Iran. Earthq. Eng. Eng. Vib. 16, 383–395 (2017). https://doi.org/10.1007/s11803-017-0388-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11803-017-0388-7

Keywords

Navigation