Skip to main content
Log in

Insight into the Inhibition of the Poisonous Sulfide Production from Sulfate-Reducing Microbiota in Mariculture Habitat

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

The production of toxic sulfides is a common environmental problem in mariculture. Therefore, the effective inhibition of sulfidogens is the key to prevent sulfides production. In this study, the possibility and mechanism of nitrate (NO3) inhibiting the activity of the sulfate-reducing microbiota (SRM) from mariculture sediments was investigated. The results showed that 1, 3, and 5 mmol L−1 NO3 continuously inhibited sulfide production for 1–3 d. As NO3 dosage increased to 7 mmol L−1, the duration of inhibition increased to 6 days. Denitrifying product NO2 heavily inhibited the activity of dissimilar sulfate reductase gene (dsrB) by 3 orders, which was the main reason that the sulfate-reducing activity was inhibited. The SRM structure changed significantly with the dosage of NO3, while the abundance of sulfidogens Desulfovibrio species increased due to their capability of detoxifying nitrite through nitrite reductase. Hence, sulfidogens Desulfovibrio species are more adaptable to a high nitrate/nitrite environment, and the traditional control strategies by dosing nitrate/nitrite should be paid more attention to. The findings will serve as helpful guidelines for sulfate-reducing microbiota in the habitat of mariculture to reduce their generation of poisonous sulfide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boetius, A., Ravenschlag, K., Schubert, C. J., Rickert, D., Widdel, F., Gieseke, A., et al., 2000. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 407: 623–626.

    Article  CAS  Google Scholar 

  • Chen, Y., Wang, J., Zhao, Y. G., Maqbool, F., Gao, M., Guo, L., et al., 2022. Sulfamethoxazole removal from mariculture wastewater in moving bed biofilm reactor and insight into the changes of antibiotic and resistance genes. Chemosphere, 298: 134327.

    Article  CAS  Google Scholar 

  • Darwin, A., Hussain, H., Griffiths, L., Grove, J., Sambongi, Y., Busby, S., et al., 1993. Regulation and sequence of the structural gene for cytochrome C552 from Escherichia coli: Not a hexahaem but a 50 kDa tetrahaem nitrite reductase. Molecular Microbiology, 9: 1255–1265.

    Article  CAS  Google Scholar 

  • de Andrade, J. S., Vieira, M. R. S., Oliveira, S. H., de Melo Santos, S. K., and Urtiga Filho, S. L., 2020. Study of microbiologically induced corrosion of 5052 aluminum alloy by sulfate-reducing bacteria in seawater. Materials Chemistry and Physics, 241: 122296.

    Article  CAS  Google Scholar 

  • Eckford, R. E., and Fedorak, P. M., 2002. Planktonic nitrate-reducing bacteria and sulfate-reducing bacteria in some western Canadian oil field waters. Journal of Industrial Microbiology and Biotechnology, 29: 83–92.

    Article  CAS  Google Scholar 

  • Fan, F., Zhang, B., Liu, J., Cai, Q., Lin, W., and Chen, B., 2020. Towards sulfide removal and sulfate reducing bacteria inhibition: Function of biosurfactants produced by indigenous isolated nitrate reducing bacteria. Chemosphere, 238: 124655.

    Article  CAS  Google Scholar 

  • Gao, C., Wang, A., Wu, W. M., Yin, Y., and Zhao, Y. G., 2014. Enrichment of anodic biofilm inoculated with anaerobic or aerobic sludge in single chambered air-cathode microbial fuel cells. Bioresource Technology, 167: 124–132.

    Article  CAS  Google Scholar 

  • Haveman, S. A., Greene, E. A., and Voordouw, G., 2005. Gene expression analysis of the mechanism of inhibition of Desulfovibrio vulgaris Hildenborough by nitrate-reducing, sulfide-oxidizing bacteria. Environmental Microbiology, 7: 1461–1465.

    Article  CAS  Google Scholar 

  • Hu, X., Liu, J., Liu, H., Zhuang, G., and Xun, L., 2018. Sulfur metabolism by marine heterotrophic bacteria involved in sulfur cycling in the ocean. Science China Earth Sciences, 61: 1369–1378.

    Article  CAS  Google Scholar 

  • Jørgensen, B. B., 1977. The sulfur cycle of a coastal marine sediment (Limfjorden, Denmark). Limnology and Oceanography, 22: 814–832.

    Article  Google Scholar 

  • Jørgensen, B. B., 1982. Mineralization of organic matter in the sea bed–The role of sulphate reduction. Nature, 296: 643–645.

    Article  Google Scholar 

  • Kang, P., and Xu, S., 2016. The impact of mariculture on nutrient dynamics and identification of the nitrate sources in coastal waters. Environmental Science and Pollution Research, 23: 1300–1311.

    Article  CAS  Google Scholar 

  • Korte, H. L., Fels, S. R., Christensen, G. A., Price, M. N., Kuehl, J. V., Zane, G. M., et al., 2014. Genetic basis for nitrate resistance in Desulfovibrio strains. Frontiers in Microbiology, 5: 153.

    Article  Google Scholar 

  • Korte, H. L., Saini, A., Trotter, V. V., Butland, G. P., Arkin, A. P., and Wall, J. D., 2015. Independence of nitrate and nitrite inhibition of Desulfovibrio vulgaris hildenborough and use of nitrite as a substrate for growth. Environmental Science and Technology, 49: 924–931.

    Article  CAS  Google Scholar 

  • Kumar, S. S., Malyan, S. K., Basu, S., and Bishnoi, N. R., 2017. Syntrophic association and performance of Clostridium, De-Sulfovibrio, Aeromonas and Tetrathiobacter as anodic biocatalysts for bioelectricity generation in dual chamber microbial fuel cell. Environmental Science and Pollution Research, 24: 16019–16030.

    Article  CAS  Google Scholar 

  • Lai, R., Li, Q., Cheng, C., Shen, H., Liu, S., Luo, Y., et al., 2020. Bio-competitive exclusion of sulfate-reducing bacteria and its anticorrosion property. Journal of Petroleum Science and Engineering, 194: 107480.

    Article  CAS  Google Scholar 

  • Liu, H., Tan, S., Yu, T., and Liu, Y., 2016. Sulfate reducing bacterial community and in situ activity in mature fine tailings analyzed by real time qPCR and microsensor. Journal of Environmental Sciences, 44: 141–147.

    Article  Google Scholar 

  • Meng, T., Zhu, M. X., Ma, W. W., and Gan, Z. X., 2019. Sulfur, iron, and phosphorus geochemistry in an intertidal mudflat impacted by shellfish aquaculture. Environmental Science and Pollution Research, 26: 6460–6471.

    Article  CAS  Google Scholar 

  • Meyer, B., Kuehl, J. V., Deutschbauer, A. M., Arkin, A. P., and Stahl, D. A., 2013. Flexibility of syntrophic enzyme systems in Desulfovibrio species ensures their adaptation capability to environmental changes. Journal of Bacteriology, 195: 4900–4914.

    Article  CAS  Google Scholar 

  • Myhr, S., Lillebø, B. L., Sunde, E., Beeder, J., and Torsvik, T., 2002. Inhibition of microbial H2S production in an oil reservoir model column by nitrate injection. Applied Journal of Microbiology and Biotechnology, 58: 400–408.

    Article  CAS  Google Scholar 

  • Okabe, S., Ito, T., Satoh, H., and Watanabe, Y., 2003. Effect of nitrite and nitrate on biogenic sulfide production in sewer biofilms determined by the use of microelectrodes. Water Science and Technology, 47: 281–288.

    Article  CAS  Google Scholar 

  • Pandey, C. B., Kumar, U., Kaviraj, M., Minick, K. J., Mishra, A. K., and Singh, J. S., 2020. DNRA: A short-circuit in biological N-cycling to conserve nitrogen in terrestrial ecosystems. Science of the Total Environment, 738: 139710.

    Article  CAS  Google Scholar 

  • Pillay, C., and Lin, J., 2013. Metal corrosion by aerobic bacteria isolated from stimulated corrosion systems: Effects of additional nitrate sources. International Biodeterioration and Biodegradation, 83: 158–165.

    Article  CAS  Google Scholar 

  • Pozsgai, G., Bátai, I. Z., and Pintér, E., 2019. Effects of sulfide and polysulfides transmitted by direct or signal transduction-mediated activation of TRPA1 channels. British Journal of Pharmacology, 176: 628–645.

    Article  CAS  Google Scholar 

  • Price, M. N., Deutschbauer, A. M., Kuehl, J. V., Liu, H., Witkowska, H. E., and Arkin, A. P., 2011. Evidence-based annotation of transcripts and proteins in the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Journal of Bacteriology, 193: 5716–5727.

    Article  CAS  Google Scholar 

  • Qi, P., Sun, D., Zhang, G., Li, D., Wu, T., and Li, Y., 2022. Bio-augmentation with dissimilatory nitrate reduction to ammonium (DNRA) driven sulfide-oxidizing bacteria enhances the durability of nitrate-mediated souring control. Water Reseach, 219: 118556.

    Article  CAS  Google Scholar 

  • San Diego-McGlone, M. L., Azanza, R. V., Villanoy, C. L., and Jacinto, G. S., 2008. Eutrophic waters, algal bloom and fish kill in fish farming areas in Bolinao, Pangasinan, Philippines. Marine Pollution Bulletin, 57: 295–301.

    Article  CAS  Google Scholar 

  • Schink, B., and Pfennig, N., 1982. Propionigenium modestum gen. nov. sp. nov. a new strictly anaerobic, nonsporing bacterium growing on succinate. Archives of Microbiology, 133: 209–216.

    Article  CAS  Google Scholar 

  • Shivani, Y., Subhash, Y., Sasikala, C., and Ramana, C. V., 2017. Halodesulfovibrio spirochaetisodalis gen. nov. sp. nov. and reclassification of four Desulfovibrio spp. International Journal of Systematic and Evolutionary Microbiology, 67: 87–93.

    Article  CAS  Google Scholar 

  • Steenkamp, D. J., and Peck, H. D., 1981. Proton translocation associated with nitrite respiration in Desulfovibrio desulfuricans. Journal of Biological Chemistry, 256: 5450–5458.

    Article  CAS  Google Scholar 

  • Thomas, Y., Courties, C., El Helwe, Y., Herbland, A., and Lemonnier, H., 2010. Spatial and temporal extension of eutrophication associated with shrimp farm wastewater discharges in the New Caledonia lagoon. Marine Pollution Bulletin, 61: 387–398.

    Article  CAS  Google Scholar 

  • Wang, X., Wang, J., Zhao, Y. G., Maqbool, F., Guo, L., Gao, M., et al., 2021. Control of toxic sulfide in mariculture environment by iron-coated ceramsite and immobilized sulfur oxidizing bacteria. Science of the Total Environment, 12: 148658.

    Article  Google Scholar 

  • Wen, J., Zhao, K., Gu, T., and Raad, I. I., 2009. A green biocide enhancer for the treatment of sulfate-reducing bacteria (SRB) biofilms on carbon steel surfaces using glutaraldehyde. International Biodeterioration and Biodegradation, 63: 1102–1106.

    Article  CAS  Google Scholar 

  • Wu, J., Lu, J., Wen, X., Zhang, Z., and Lin, Y., 2019. Severe nitrate pollution and health risks of coastal aquifer simultaneously influenced by saltwater intrusion and intensive anthropogenic activities. Archives of Environmental Contamination and Toxicology, 77: 79–87.

    Article  CAS  Google Scholar 

  • Xin, M., Wang, B., Xie, L., Sun, X., Wei, Q., Liang, S., et al., 2019. Long-term changes in nutrient regimes and their ecological effects in the Bohai Sea, China. Marine Pollution Bulletin, 146: 562–573.

    Article  CAS  Google Scholar 

  • Xu, J., Han, L., and Yin, W., 2022. Research on the ecologicalization efficiency of mariculture industry in China and its influencing factors. Marine Policy, 137: 104935.

    Article  Google Scholar 

  • Yan, S., Cheng, K. Y., Ginige, M. P., Morris, C., Deng, X., Li, J., et al., 2022. Sequential removal of selenate, nitrate and sulfate and recovery of elemental selenium in a multi-stage bioreactor process with redox potential feedback control. Journal of Hazardous Materials, 424: 127539.

    Article  CAS  Google Scholar 

  • Zhou, C., Vannela, R., Hayes, K. F., and Rittmann, B. E., 2014. Effect of growth conditions on microbial activity and iron-sulfide production by Desulfovibrio vulgaris. Journal of Hazardous Materials, 272: 28–35.

    Article  CAS  Google Scholar 

  • Zhou, J., and Xing, J., 2021. Haloalkaliphilic denitrifiers-dependent sulfate-reducing bacteria thrive in nitrate-enriched environments. Water Reseach, 201: 117354.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 41977315), and the Funda- mental Research Funds for the Central Universities of China (No. 201964004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiming Zhang or Yangguo Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Zhang, Z., Zhao, Y. et al. Insight into the Inhibition of the Poisonous Sulfide Production from Sulfate-Reducing Microbiota in Mariculture Habitat. J. Ocean Univ. China 23, 447–454 (2024). https://doi.org/10.1007/s11802-024-5539-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-024-5539-7

Key words

Navigation