Skip to main content

Advertisement

Log in

Research on the Marine Antifouling Ability and Mechanism of Acrylate Copolymers and Marine Coatings Based on a Synergistic Effect

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

Marine biofouling is an urgent global problem in the process of ocean exploitation and utilization. In our work, a series of zinc-based acrylate copolymers (ACZn-x) were designed and synthesized using benzoic acid, zinc oxide (ZnO) and a random quaternion copolymer consisting of ethyl acrylate (EA), butyl acrylate (BA), acrylic acid (AA) and methacrylic acid (MAA) by free radical polymerization and dehydration condensation. The ACZn-x with a zinc benzoate side chain is able to hydrolyze in natural seawater under static conditions, resulting in the formation of a smooth surface. We investigated and confirmed the antifouling (AF) behavior of ACZn-x in the laboratory and revealed that they have better antibacterial (86% for S. aureus and 72% for E. coli) and anti-algal (≥60.1% for N. closterium and ≥67.5% for P. subcordiformis) activities. We also assessed the marine AF properties of ACZn-x and corresponding coatings in Qingdao, China; the ACZn-x exhibited ideal AF properties with little silt and biological mucosa adhered to the ACZn-x surface after 6 months, and corresponding coatings exhibited little biofouling after 16 months in the ocean. Importantly, possible AF mechanisms were further proposed at the cellular level. These results could be helpful for the development and application of effective AF coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Achinas, S., Charalampogiannis, N., and Euverink, G. J. W., 2019. A brief recap of microbial adhesion and biofilms. Applied Sciences, 9 (14): 2801.

    Article  Google Scholar 

  • Antizar-Ladislao, B., 2008. Environmental levels, toxicity and human exposure to tributyltin (TBT)-contaminated marine environment. A review. Environment International, 34 (2): 292–308.

    Article  Google Scholar 

  • Arokiyaraj, S., Vincent, S., Saravanan, M., Lee, Y., Oh, Y. K., and Kim, K. H., 2017. Green synthesis of silver nanoparticles using Rheum palmatum root extract and their antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa. Artif Cells Nanomed Biotechnol, 45 (2): 372–379.

    Article  Google Scholar 

  • Bakkali, F., Averbeck, S., Averbeck, D., and Idaomar, M., 2008. Biological effects of essential oils–A review. Food and Chemical Toxicology, 46 (2): 446–475.

    Article  Google Scholar 

  • Banerjee, I., Pangule, R. C., and Kane, R. S., 2011. Antifouling coatings: Recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Advanced Materials, 23 (6): 690–718.

    Article  Google Scholar 

  • Bannister, J., Sievers, M., Bush, F., and Bloecher, N., 2019. Biofouling in marine aquaculture: A review of recent research and developments. Biofouling, 35 (6): 631–648.

    Article  Google Scholar 

  • Callow, J. A., and Callow, M. E., 2011. Trends in the development of environmentally friendly fouling-resistant marine coatings. Nature Communications, 2 (1): 1–10.

    Article  Google Scholar 

  • Chambers, L. D., Stokes, K. R., Walsh, F. C., and Wood, R. J. K., 2006. Modern approaches to marine antifouling coatings. Surface and Coatings Technology, 201 (6): 3642–3652.

    Article  Google Scholar 

  • Chen, R., Li, Y., Tang, L., Yang, H., Lu, Z., Wang, J., et al., 2017. Synthesis of zinc-based acrylate copolymers and their marine antifouling application. RSC Advances, 7 (63): 40020–40027.

    Article  Google Scholar 

  • Chen, S., Zheng, J., Li, L., and Jiang, S., 2005. Strong resistance of phosphorylcholine self-assembled monolayers to protein adsorption: Insights into nonfouling properties of zwitterionic materials. Journal of the American Chemical Society, 127 (41): 14473–14478.

    Article  Google Scholar 

  • Chen, Z., Zhao, W., Mo, M., Zhou, C., Liu, G., Zeng, Z., et al., 2015. Architecture of modified silica resin coatings with various micro/nano patterns for fouling resistance: Microstructure and antifouling performance. RSC Advances, 5 (118): 97862–97873.

    Article  Google Scholar 

  • Ciriminna, R., Bright, F. V., and Pagliaro, M., 2015. Ecofriendly antifouling marine coatings. ACS Sustainable Chemistry and Engineering, 3 (4): 559–565.

    Article  Google Scholar 

  • Dai, G., Xie, Q., Ai, X., Ma, C., and Zhang, G., 2019. Self-generating and self-renewing zwitterionic polymer surfaces for marine anti-biofouling. ACS Applied Materials and Interfaces, 11 (44): 41750–41757.

    Article  Google Scholar 

  • Di Pasqua, R., Betts, G., Hoskins, N., Edwards, M., Ercolini, D., and Mauriello, G., 2007. Membrane toxicity of antimicrobial compounds from essential oils. Journal of Agricultural and Food Chemistry, 55 (12): 4863–4870.

    Article  Google Scholar 

  • Fernandes, S. C. M., Sadocco, P., Alonso-Varona, A., Palomares, T., Eceiza, A., Silvestre, A. J. D., et al., 2013. Bioinspired antimicrobial and biocompatible bacterial cellulose membranes obtained by surface functionalization with aminoalkyl groups. ACS Applied Materials and Interfaces, 5 (8): 3290–3297.

    Article  Google Scholar 

  • Ferriol, M., Gentilhomme, A., Cochez, M., Oget, N., and Mieloszynski, J. L., 2003. Thermal degradation of poly(methyl methacrylate) (PMMA): Modelling of DTG and TG curves. Polymer Degradation and Stability, 79 (2): 271–281.

    Article  Google Scholar 

  • Finlay, J. A., Callow, M. E., Schultz, M. P., Swain, G. W., and Callow, J. A., 2002. Adhesion strength of settled spores of the green alga Enteromorpha. Biofouling, 18 (4): 251–256.

    Article  Google Scholar 

  • Formigari, A., Irato, P., and Santon, A., 2007. Zinc, antioxidant systems and metallothionein in metal mediated-apoptosis: Biochemical and cytochemical aspects. Comparative Biochemistry and Physiology. Toxicology & Pharmacology, 146 (4): 443–459.

    Article  Google Scholar 

  • Hepler, P. K., 2005. Calcium: A central regulator of plant growth and development. The Plant Cell, 17 (8): 2142–2155.

    Article  Google Scholar 

  • Huang, C., Brault, N. D., Li, Y., Yu, Q., and Jiang, S., 2012. Controlled hierarchical architecture in surface-initiated zwitterionic polymer brushes with structurally regulated functionalities. Advanced Materials, 24 (14): 1834–1837.

    Article  Google Scholar 

  • Jiang, S., and Cao, Z., 2010. Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Advanced Materials, 22 (9): 920–932.

    Article  Google Scholar 

  • Jiang, W., Jin, X., Li, H., Zhang, S., Zhou, T., and Xie, H., 2020. Modification of nano-hybrid silicon acrylic resin with anticorrosion and hydrophobic properties. Polymer Testing, 82: 106287.

    Article  Google Scholar 

  • Kenawy, E., Worley, S. D., and Broughton, R., 2007. The chemistry and applications of antimicrobial polymers: A state-of-the-art review. Biomacromolecules, 8 (5): 1359–1384.

    Article  Google Scholar 

  • Kiil, S., Weinell, C. E., Pedersen, M. S., and Dam-Johansen, K., 2001. Analysis of self-polishing antifouling paints using rotary experiments and mathematical modeling. Industrial and Engineering Chemistry Research, 40 (18): 3906–3920.

    Article  Google Scholar 

  • Kumar, A., Mills, S., Bazaka, K., Bajema, N., Atkinson, I., and Jacob, M. V., 2018. Biodegradable optically transparent terpinen-4-ol thin films for marine antifouling applications. Surface and Coatings Technology, 349: 426–433.

    Article  Google Scholar 

  • Lacoste, E., and Gaertner-Mazouni, N., 2015. Biofouling impact on production and ecosystem functioning: A review for bivalve aquaculture. Reviews in Aquaculture, 7 (3): 187–196.

    Article  Google Scholar 

  • Lejars, M., Margaillan, A., and Bressy, C., 2012. Fouling release coatings: A nontoxic alternative to biocidal antifouling coatings. Chemical Reviews, 112 (8): 4347–4390.

    Article  Google Scholar 

  • Liu, X., Gan, K., Liu, H., Song, X., Chen, T., and Liu, C., 2017. Antibacterial properties of nano-silver coated PEEK prepared through magnetron sputtering. Dental Materials, 33 (9): e348–e360.

    Article  Google Scholar 

  • Ma, C., Xu, L., Xu, W., and Zhang, G., 2013. Degradable polyurethane for marine anti-biofouling. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 1 (24): 3099–3106.

    Article  Google Scholar 

  • Ma, C., Yang, H., Zhou, X., Wu, B., and Zhang, G., 2012. Polymeric material for anti-biofouling. Colloids and Surfaces B: Biointerfaces, 100: 31–35.

    Article  Google Scholar 

  • Schultz, M. P., 2007. Effects of coating roughness and biofouling on ship resistance and powering. Biofouling, 23 (5): 331–341.

    Article  Google Scholar 

  • Schultz, M. P., Bendick, J. A., Holm, E. R., and Hertel, W. M., 2011. Economic impact of biofouling on a naval surface ship. Biofouling, 27 (1): 87–98.

    Article  Google Scholar 

  • Sousa, A. C. A., Pastorinho, M. R., Takahashi, S., and Tanabe, S., 2014. History on organotin compounds, from snails to humans. Environmental Chemistry Letters, 12 (1): 117–137.

    Article  Google Scholar 

  • Tsibouklis, J., and Nevell, T. G., 2003. Ultra-low surface energy polymers: The molecular design requirements. Advanced Materials, 15 (78): 647–650.

    Article  Google Scholar 

  • Wendy, V. Z., Buss, H. G., Ellebracht, N. C., Lynd, N. A., Fischer, D. A., Finlay, J. A., et al., 2014. Sequence of hydrophobic and hydrophilic residues in amphiphilic polymer coatings affects surface structure and marine antifouling/fouling release properties. ACS Macro Letters, 3 (4): 364–368.

    Article  Google Scholar 

  • Wu, G., Li, C., Jiang, X., and Yu, L., 2016. Highly efficient antifouling property based on self-generating hydrogel layer of polyacrylamide coatings. Journal of Applied Polymer Science, 133 (42): 1–11.

    Article  Google Scholar 

  • Wu, Y., Wu, W., Zhao, W., and Lan, X., 2020. Revealing the antibacterial mechanism of copper surfaces with controllable microstructures. Surface and Coatings Technology, 395: 125–911.

    Article  Google Scholar 

  • Xie, C., Guo, H., Zhao, W., and Zhang, L., 2020. Environmentally friendly marine antifouling coating based on a synergistic strategy. Langmuir, 36 (9): 2396–2402.

    Article  Google Scholar 

  • Xie, L., Hong, F., He, C., Ma, C., Liu, J., Zhang, G., et al., 2011. Coatings with a self-generating hydrogel surface for antifouling. Polymer, 52 (17): 3738–3744.

    Article  Google Scholar 

  • Xie, Q., Xie, Q., Pan, J., Ma, C., and Zhang, G., 2018. Biodegradable polymer with hydrolysis-induced zwitterions for antibiofouling. ACS Applied Materials and Interfaces, 10 (13): 11213–11220.

    Article  Google Scholar 

  • Xu, J., Zhao, W., Peng, S., Zeng, Z., Zhang, X., Wu, X., et al., 2014. Investigation of the biofouling properties of several algae on different textured chemical modified silicone surfaces. Applied Surface Science, 311: 703–708.

    Article  Google Scholar 

  • Xu, W., Ma, C., Ma, J., Gan, T., and Zhang, G., 2014. Marine biofouling resistance of polyurethane with biodegradation and hydrolyzation. ACS Applied Materials and Interfaces, 6 (6): 4017–4024.

    Article  Google Scholar 

  • Yebra, D. M., Kiil, S., and Dam-Johansen, K., 2004. Antifouling technology–Past, present and future steps towards efficient and environmentally friendly antifouling coatings. Progress in Organic Coatings, 50 (2): 75–104.

    Article  Google Scholar 

  • Yebra, D. M., Kiil, S., Dam-Johansen, K., and Weinell, C., 2005. Reaction rate estimation of controlled-release antifouling paint binders: Rosin-based systems. Progress in Organic Coatings, 53 (4): 256–275.

    Article  Google Scholar 

  • Yonehara, Y., Yamashita, H., Kawamura, C., and Itoh, K., 2001. A new antifouling paint based on a zinc acrylate copolymer. Progress in Organic Coatings, 42 (3): 150–158.

    Article  Google Scholar 

  • Zhou, W., Wang, Y., Ni, C., and Yu, L., 2021. Preparation and evaluation of natural rosin-based zinc resins for marine antifouling. Progress in Organic Coatings, 157: 106270.

    Article  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Key Research and Development Project (No. 2019YFC0312101), the Scientific Research Project of Sanya Yazhou Bay Science and Technology City Administration (No. SKJC-2020-01-015), and the Hainan Provincial Key Research and Development Project (No. ZDYF2021GXJS029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuefeng Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, W., Zhou, Y., Ni, C. et al. Research on the Marine Antifouling Ability and Mechanism of Acrylate Copolymers and Marine Coatings Based on a Synergistic Effect. J. Ocean Univ. China 22, 717–727 (2023). https://doi.org/10.1007/s11802-023-5400-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-023-5400-4

Key words

Navigation