Skip to main content
Log in

The Subduction Structure Beneath the New Britain Island Arc and the Adjacent Region from Double-Difference Tomography

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

We applied double-difference tomography to relocate seismic events and determine the lithospheric velocity structure beneath the New Britain Island arc and the South Bismarck Sea Basin, based on the local P wave arrival time dataset collected by the International Seismological Centre. Results of the seismic relocation and velocity inversion show that the subduction of Solomon Sea Plate along the New Britain Trench is spatially different above 150 km, and the subduction angle of the slab on the west side is higher than that on the east side. The relocated earthquakes also show that there are double seismic zones at the depths of about 30–90 km beneath the New Britain Island Arc. The velocity structure shows that the dehydration of the subducting slab caused the low-velocity anomalies in mantle wedge above the slab, which are associated with the magmatic activities around the New Guinea-New Britain Island arc. Moreover, it shows that there is another low-velocity anomaly zone beneath the Bismarck mid-oceanic ridge with spatial variation. Beneath the west of the Bismarck mid-oceanic ridge, the low-velocity anomaly is weakly connected to the subducted Solomon Sea slab. Conversely, the low-velocity anomaly beneath the Manus Sea Basin is highly intertwined to the subducting slab and its mantle wedge, indicating that the subduction of the Solomon Sea Plate might be a key deep dynamic factor that drives the spreading of the Manus Sea Basin and the separation of the Bismarck Plate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abers, G. A., and Roecker, S. W., 1991. Deep structure of an arc-continent collision: Earthquake relocation and inversion for upper mantle P and S wave velocities beneath Papua New Guinea. Journal of Geophysical Research, 96(B4): 6379–6401.

    Article  Google Scholar 

  • Binns, R. A., and Scott, S. D., 1993. Activity forming polymetallic sulfide deposits associated with felsic volcanic rocks in the eastern Manus Back-arc basin, Papua New Guinea. Economic Geology, 88(8): 2226–2236.

    Article  Google Scholar 

  • Both, R., Crook, K., Taylor, B., Brogan, S., Chappell, B., Frankel, E., et al., 1986. Hydrothermal chimneys and associated fauna in the Manus Back-arc basin, Papua New Guinea. Eos, Transactions American Geophysical Union, 67(21): 489–490.

    Article  Google Scholar 

  • DeMets, C., Gordon, R. G., and Argus, D. F., 2010. Geologically current plate motions. Geophysical Journal International, 181(1): 1–80.

    Article  Google Scholar 

  • Feng, B., Zhang, H., Gong, W., Xing, J., Li, D., Xu, C., et al., 2022. Teleseismic P-wave tomography of the New Guinea- Solomon arc system. Journal of Ocean University of China, 21(3): 694–706.

    Article  Google Scholar 

  • Finlayson, D. M., Cull, J. P., Wiebenga, W. A., Furumoto, A. S., and Webb, J. P., 1972. New Britain-New Ireland crustal seismic refraction investigations 1967 and 1969. Geophysical Journal International, 29(3): 245–253.

    Article  Google Scholar 

  • Franz, L., and Romer, R. L., 2010. Different styles of metasomatic veining in ultramafic xenoliths from the Tubaf seamount (Bismarck microplate, Papua New Guinea). Lithos, 114: 30–53.

    Article  Google Scholar 

  • Gong, W., Jiang, X., Xing, J., Li, D., and Xu, C., 2019. Subduction dynamics of the New-Guinea-Solomon arc system: Constraints from the subduction initiation of the plate. Marine Geology & Quaternary Geology, 39(9): 115–129 (in Chinese with English abstract).

    Google Scholar 

  • Heidbach, O., Tingay, M., Barth, A., Reinecker, J., Kurfe, D., and Müller, B., 2010. Global crustal stress pattern based on the World Stress Map database release 2008. Tectonophysics, 482(1): 3–15.

    Article  Google Scholar 

  • Holm, R. J., and Richards, S. W., 2013. A re-evaluation of arc-continent collision and along-arc variation in the Bismarck Sea region, Papua New Guinea. Australian Journal of Earth Sciences, 60(5): 605–619.

    Article  Google Scholar 

  • Holm, R. J., Rosenbaum, G., and Richards, S. W., 2016. Post 8 Ma reconstruction of Papua New Guinea and Solomon Islands: Microplate tectonics in a convergent plate boundary setting. Earth-Science Reviews, 156: 66–81.

    Article  Google Scholar 

  • Honza, E., Miyazaki, T., and Lock, J., 1989. Subduction erosion and accretion in the Solomon Sea region. Tectonophysics, 160(1–4): 49–62.

    Article  Google Scholar 

  • Hyndman, R. D., and Peacock, S. M., 2003. Serpentinization of the forearc mantle. Earth and Planetary Science Letters, 212(3–4): 417–432.

    Article  Google Scholar 

  • Johnson, T., and Molnar, P., 1972. Focal mechanisms and plate tectonics of the Southwest Pacific. Journal of Geophysical Research, 77(826): 5000–5032.

    Article  Google Scholar 

  • Lee, S. M., and Ruellan, E., 2006. Tectonic and magmatic evolution of the Bismarck Sea, Papua New Guinea: Review and new synthesis. In: Back-Arc Spreading Systems, Geological, Biological, Chemical, and Physical Interactions. Chirstie, D. M., et al., eds., American Geophysical Union, Washington, D. C., 263–286.

    Chapter  Google Scholar 

  • Ma, Y., Yin, X., Wang, X., Chen, S., and Zeng, Z., 2018. Influence of tectonic-magmatism on hydrothermal activity: A case study of the Manus Basin. Marine Sciences, 42(5): 163–171 (in Chinese with English abstract).

    Google Scholar 

  • Ma, Y., Zeng, Z. G., Chen, S., Yin, X., and Wang, X., 2017. Origin of the volcanic rocks erupted in the Eastern Manus Basin: Basaltic andesite-andesite-dacite associations. Journal of Ocean University of China, 16(3): 389–402.

    Article  Google Scholar 

  • McGuire, J. D., and Wiens, D. A., 2013. A double seismic zone in New Britain and the morphology of the Solomon Plate at intermediate depths. Geophysical Research Letters, 22(15): 1965–1968.

    Article  Google Scholar 

  • Mori, J., 1989. The New Ireland earthquake of July 3, 1985 and associated seismicity near the Pacific Solomon Sea-Bismarck Sea triple junction. Physics of the Earth and Planetary Interiors, 55(1–2): 144–153.

    Article  Google Scholar 

  • Mu, D., Li, S., Suo, Y., Zhu, J., and Yu, S., 2019. Tectonic and geodynamic mechanism of back-arc-rifting derived microblocks: Insights from back-arc spreading in the West Pacific. Geotectonica et Metallogenia, 43(4): 665–677 (in Chinese with English abstract).

    Google Scholar 

  • Ortega-Osorio, A., and Scott, S. D., 2001. Morphological and chemical characterization of neutrally buoyant plume-derived particles at the eastern Manus Basin hydrothermal field, Papua New Guinea. Canadian Mineralogist, 39: 17–31.

    Article  Google Scholar 

  • Paige, C. C., and Saunders, M. A., 1982. LSQR: An algorithm for sparse linear equations and sparse least squares. ACM Transactions on Mathematical Software, 8: 43–71.

    Article  Google Scholar 

  • Pegler, G., Das, S., and Woodhouse, J. H., 1995. A seismological study of the eastern New Guinea and the western Solomon Sea regions and its tectonic implications. Geophysical Journal International, 122(3): 961–981.

    Article  Google Scholar 

  • Sinton, J. M., Ford, L. L., Bruce, C., and Mcculloch, M. T., 2003. Magma genesis and mantle heterogeneity in the manus back-arc basin, Papua New Guinea. Journal of Petrology, 44(1): 159–195.

    Article  Google Scholar 

  • Spakman, W., Lee, S., and Hilst, R., 1993. Travel-time tomography of the European-Mediterranean mantle down to 1400 km. Physics of the Earth and Planetary Interiors, 79(1–2): 3–74.

    Article  Google Scholar 

  • Stern, R. J., 2002. Subduction zones. Reviews of Geophysics, 40(4): 3–38.

    Article  Google Scholar 

  • Tatsumi, Y., and Eggins, S., 1995. Subduction Zone Magmatism. Blackwell Science, Boston, 211pp.

    Google Scholar 

  • Tatsumi, Y., Hamilton, D. L., and Nesbitt, R. W., 1986. Chemical characteristics of fluid phase released from a subducted lithosphere and origin of arc magmas: Evidence from high-pressure experiments and natural rocks. Journal of Volcanology and Geothermal Research, 29: 293–309.

    Article  Google Scholar 

  • Tatsumi, Y., Sakuyama, M., Fukuyama, H., and Kushiro, I., 1983. Generation of arc basalt magmas and thermal structure of the mantle wedge in subduction zones (Japan arc). Journal of Geophysical Research: Solid Earth, 88: 5815–5825.

    Article  Google Scholar 

  • Taylor, B., 1979. Bismarck Sea—Evolution of a back-arc basin. Geology, 7(4): 171–174.

    Article  Google Scholar 

  • Thal, J., Tivey, M., Yoerger, D., Jöns, N., and Bach, W., 2014. Geologic setting of PACManus hydrothermal area—High resolution mapping and in situ observations. Marine Geology, 355: 98–114.

    Article  Google Scholar 

  • Tregoning, P., Jackson, R. J., McQueen, H., Lambeck, K., Stevens, C., Little, R. P., et al., 1999. Motion of the South Bismarck Plate, Papua New Guinea. Geophysical Research Letters, 26(23): 3517–3520.

    Article  Google Scholar 

  • Tregoning, P., Lambeck, K., Stolz, A., Morgan, P., McClusky, S. C., van ber Beek, P., et al., 1998. Estimation of current plate motions in Papua New Guinea from global positioning system observation. Journal of Geophysical Research: Solid Earth, 103(B6): 12181–12203.

    Article  Google Scholar 

  • Waldhauser, F., and Ellsworth, W., 2000. A double-difference earthquake location algorithm: Method and application to the northern hayward fault California. Translated World Seismology, 90: 1353–1368.

    Google Scholar 

  • Wallace, L. M., Stevens, C., Silver, E., McCaffrey, R., Loratung, W., Hasiata, S., et al., 2004. GPS and seismological constraints on active tectonics and arc-continent collision in Papua New Guinea: Implications for mechanics of microplate rotations in a plate boundary zone. Journal of Geophysical Research: Solid Earth, 109(B5): B05404.

    Article  Google Scholar 

  • Weiler, P. D., and Coe, R. S., 2000. Rotations in the actively colliding Finisterre arc terrane: Paleomagnetic constraints on plio-Pleistocene evolution of the South Bismarck microplate, northeastern Papua New Guinea. Tectonophysics, 316: 297–325.

    Article  Google Scholar 

  • Whitmore, G. P., Johnson, D. P., Crook, K. A. W., Galewsky, J., and Silver, E. A., 1997. Convergent margin extension associated with arc-continent collision: The Finsch Deep, Papua New Guinea. Tectonics, 16(1): 77–87.

    Article  Google Scholar 

  • Wyllie, P. J., 1988. Magma genesis, plate tectonics, and chemical differentiation of the earth. Reviews of Geophysics, 26(3): 370–404.

    Article  Google Scholar 

  • Wyss, M., Hasegawa, A., and Nakajima, J., 2001. Source and path of magma for volcanoes in the subduction zone of northeastern Japan. Geophysical Research Letters, 28(9): 1819–1822.

    Article  Google Scholar 

  • Yamasaki, T., and Seno, T., 2003. Double seismic zone and dehydration embrittlement of the subducting slab. Journal of Geophysical Research: Solid Earth, 108(B4): 2212, DOI: https://doi.org/10.1029/2002JB001918.

    Article  Google Scholar 

  • Zhang, H. J., and Thurber, C., 2003. Double-difference tomography: The method and its application to the Hayward fault, California. Bulletin of the Seismological Society of America, 93(5): 1875–1889.

    Article  Google Scholar 

  • Zhang, H. J., and Thurber, C., 2006. Development and applications of double-difference seismic tomography. Pure & Applied Geophysics, 163(2–3): 373–403.

    Article  Google Scholar 

  • Zhang, K. L., and Wei, D. P., 2008. Progresses of the researches and the causing mechanisms on the double seismic zones within the subduction zones around the Pacific Ocean. Progress in Geophysics, 23(1): 31–39 (in Chinese with English abstract).

    Google Scholar 

  • Zhao, H., Zeng, Z., Yin, X., and Chen, S., 2014. Silicon and oxygen isotopic composition of igneous rocks from the eastern Manus Basin. Journal of Ocean University of China, 13(3): 421–427.

    Article  Google Scholar 

  • Zoback, M. L., 1992. First- and second-order patterns of stress in the lithosphere: The world stress map project. Journal of Geophysical Research: Solid Earth, 97(B8): 11703–11728.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Wessel & Smith (https://www.soest.hawaii.edu/gmt/) for the free use of GMT software to produce most figures in this work. We are grateful for the codes of double-difference tomography shared by Prof. Haijiang Zhang at the University of Science and Technology of China. This work was supported by the National Natural Science Foundation of China (Nos. 41906048 and 91858215).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaoyang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Gong, W., Xing, J. et al. The Subduction Structure Beneath the New Britain Island Arc and the Adjacent Region from Double-Difference Tomography. J. Ocean Univ. China 22, 107–118 (2023). https://doi.org/10.1007/s11802-023-5282-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-023-5282-5

Key words

Navigation