Skip to main content
Log in

The Origin and Preservation of Suspended Barites near the 90°E Ridge in the Northeastern Indian Ocean

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

Suspended particulate barite crystals were detected in the water columns at four different stations near the 90°E ridge in the Indian Ocean. Four distinct morphological types of marine barites were distinguished: euhedral-subhedral crystals, oval or round crystals, rhombic crystals, and irregular crystals. The barite crystals in the study area are typically fine, with a dominant size of 1–3 µm. The vertical distribution of barites is significantly affected by the formation and sedimentation processes. Barites begin to appear at a depth of 30 m and are formed primarily from the surface to the depth of 2000 m with a concentration peak at the depth of 200 m, where particles are coarser than those in the other layers. The barites begin to settle and dissolve once formed in the water column, resulting in finer barite particles and lower particle concentrations. The formation of barite crystals is related to biological processes associated with the decomposition of barium-rich skeletons in the microenvironment of decaying organic matter that is affected by the primary productivity and dissolved oxygen content in the water column. The dissolving process of barite crystals showed similar variation with the concentration of dissolved barium in ocean water, and the substitution of strontium for barite in crystals promotes the selective dissolution of barite and exerts an important impact on its morphology. It is approximately 33% of barites in the amount and 22% in the concentration to settle to the bottom of the water column compared to that observed in the main barite formation zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander, M. P., Virupaxa, K. B., Adam, E. S., Elderfield, H., Galy, A., and Dennis, A., 2009. Indian Ocean circulation and productivity during the last glacial cycle. Earth and Planetary Science Letters, 285: 179–189.

    Article  Google Scholar 

  • Bacon, M. P., and Edmond, J. M., 1972. Barium at GEOSECS III in the Southwest Pacific. Earth and Planetary Science Letters, 16: 66–74.

    Article  Google Scholar 

  • Beek, P. V., Sternberg, E., Reys, J. L., Souhaut, M., Robin, E., and Jeandel, C., 2009. 228Ra/226Ra and 226Ra/Ba ratios in the western Mediterranean Sea: Barite formation and transport in the water column. Geochimica et Cosmochimica Acta, 73: 4720–4737.

    Article  Google Scholar 

  • Bernat, M., Church, T., and Allegre, C. J., 1972. Barium and strontium concentrations in Pacific and Mediterranean Sea water profiles by direct isotope dilution mass spectrometry. Earth and Planetary Science Letters, 16: 75–80.

    Article  Google Scholar 

  • Bernstein, R., Byrne, R. H., and Schijf, J., 1998. Acantharians: A missing link in the oceanic biogeochemistry of barium. Deep Sea Research Part I: Oceanographic Research Papers, 45: 491–505.

    Article  Google Scholar 

  • Bernstein, R., Byrne, R., Betzer, P., and Greco, A. M., 1992. Morphologies and transformations of celestite in seawater: The role of acantharians in strontium and barium geochemistry. Geochimica et Cosmochimica Acta, 56: 3273–3279.

    Article  Google Scholar 

  • Bertram, M., and Cowen, J., 1997. Morphological and compositional evidence for biotic precipitation of marine barite. Journal of Marine Research, 55: 577–593.

    Article  Google Scholar 

  • Bishop, J. K., 1988. The barite-opal-organic carbon association in oceanic particulate matter. Nature, 332: 341–343.

    Article  Google Scholar 

  • Bosbach, D., Hall, C., and Putnis, A., 1998. Mineral precipitation and dissolution in aqueous solution: In-situ microscopic observations on barite (001) with atomic force microscopy. Chemical Geology, 151: 143–160.

    Article  Google Scholar 

  • Burton, K. W., and Vance, D., 2000. Glacial-interglacial variations in the neodymium isotope composition of seawater in the Bay of Bengal recorded by planktonic foraminifera. Earth and Planetary Science Letters, 176: 425–441.

    Article  Google Scholar 

  • Campbell, S. M., Moucha, R., Derry, L. A., and Raymo, M. E., 2018. Effects of dynamic topography on the Cenozoic carbonate compensation depth. Geochemistry, Geophysics, Geosystems, 19(4): 1025–1034.

    Article  Google Scholar 

  • Cao, Z., Siebert, C., Hathorne, E. C., Dai, M., and Frank, M., 2016. Constraining the oceanic barium cycle with stable barium isotopes. Earth and Planetary Science Letters, 434: 1–9.

    Article  Google Scholar 

  • Chan, L. H., Edmond, J. M., Stallard, R. F., Broecker, W. S., and Ku, T. L., 1976. Radium and barium at GEOSECS stations in the Atlantic and Pacific. Earth and Planetary Science Letters, 32: 258–267.

    Article  Google Scholar 

  • Church, T. M., and Wolgemuth, K., 1972. Marine barite saturation. Earth and Planetary Science Letters, 15: 35–44.

    Article  Google Scholar 

  • Dehairs, R., Chesselet, R., and Jedwab, J., 1980. Discrete suspended particles of barite and the barium cycle in the open ocean. Earth and Planetary Science Letters, 49: 529–550.

    Article  Google Scholar 

  • Dehairs, F., Goeyens, L., Stroobants, N., Bernard, P., Goyet, C., Poisson, A., et al., 1990. On suspended barite and the oxygen minimum in the Southern Ocean. Global Biogeochemical Cycles, 4: 85–102.

    Article  Google Scholar 

  • Dymond, J., and Collier, R., 1996. Particulate barium fluxes and their relationships to biological productivity. Deep Sea Research Part II: Topical Studies in Oceanography, 43: 1283–1308.

    Article  Google Scholar 

  • Dymond, J., Suess, E., and Lyle, M., 1992. Barium in deep-sea sediment: A geochemical proxy for paleoproductivity. Paleoceanography, 7: 163–181.

    Article  Google Scholar 

  • Eagle, M., Paytan, A., Arrigo, K. R., Dijken, G. V., and Murray, R. W., 2003. A comparison between excess barium and barite as indicators of carbon export. Paleoceanography, 18: 1021–1033.

    Google Scholar 

  • Esser, B. K., and Volpe, A., 2002. At-sea high-resolution trace element mapping: San Diego Bay and its plume in the adjacent coastal ocean. Environmental Science & Technology, 36: 2826–2832.

    Article  Google Scholar 

  • Fagel, N., Debrabant, P., and Andre, L., 1994. Clay supplies in the central Indian Basin since the late Miocene: Climatic or tectonic control?. Marine Geology, 122: 151–172.

    Article  Google Scholar 

  • Fang, N., Ding, X., Liu, Y., Hu, C., Chen, X., and Zhang, Z., 2002. Pelagic sedimentary records of the Ninetyeast Ridge and the late Cenozoic important tectono-environment events. Earth Science Frontiers, 9(1): 103–111 (in Chinese with English abstract).

    Google Scholar 

  • Francois, R., Honjo, S., Manganini, S. J., and Ravizza, G. E., 1995. Biogenic barium fluxes to the deep sea: Implications for paleoproductivity reconstruction. Global Biogeochemistry Cycles, 9: 289–303.

    Article  Google Scholar 

  • Ganeshram, R. S., François, R., Commeau, J., and Brown-Leger, S. L., 2003. An experimental investigation of barite formation in seawater. Geochimica et Cosmochimica Acta, 67: 2599–2605.

    Article  Google Scholar 

  • Gingele, F., and Dahmke, A., 1994. Discrete barite particles and barium as tracers of paleoproductivity in South Atlantic sediments. Paleoceanography, 9: 151–168.

    Article  Google Scholar 

  • Gooday, A., and Nott, J., 1982. Intracellular barite crystals in two Xenophyophores, Aschemonella ramuliformis and Galahteammina sp. with comments on the taxomony of A. ramuliformis. Journal of the Marine Biological Association of the United Kingdom, 62: 595–605.

    Article  Google Scholar 

  • Gorsline, D. S., 1984. A review of fine-grained sediment origins, characteristics, transport and deposition. In: Fine Grained Sediments: Deep-Water Processes and Facies. Stow, D., and Piper, D., eds., Blackwell Scientific, Oxford, 17–34.

    Google Scholar 

  • Griffith, E. M., and Paytan, A., 2012. Barite in the ocean-occurrence, geochemistry and palaeoceanographic applications. Sedimentology, 59(6): 1817–1835.

    Article  Google Scholar 

  • Hoppema, M., Dehairs, F., Navez, J., Monnin, C., and Baar, H. J. W. D., 2010. Distribution of barium in the Weddell Gyre: Impact of circulation and biogeochemical processes. Marine Chemistry, 122(1–4): 118–129.

    Article  Google Scholar 

  • Hovan, S. A., and Rea, D. K., 1992. The Cenozoic record of continental mineral deposition on Broken and Ninetyeast Ridges, Indian Ocean: Southern African aridity and sediment delivery from the Himalayas. Paleoceanography, 7: 833–860.

    Article  Google Scholar 

  • Jeandel, C., Dupré, B., Lebaron, G., Monnin, C., and Minster, J. F., 1996. Longitudinal distributions of dissolved barium, silica and alkalinity in the western and southern Indian Ocean. Deep Sea Research Part I: Oceanographic Research Papers, 43: 1–31.

    Article  Google Scholar 

  • Jeandel, C., Tachikawa, K., Bory, A., and Dehairs, F., 2000. Biogenic barium in suspended and trapped material as a tracer of export production in the tropical NE Atlantic (EUMELI sites). Marine Chemistry, 71: 125–142.

    Article  Google Scholar 

  • Kai, D., Daniel, E., Shuler, P. J., Chen, H. J., Tang, Y., and Yen, T. F., 1999. Mechanisms of surface precipitation and dissolution of barite: A morphology approach. Journal of Colloid and Interface Science, 214(2): 427–437.

    Article  Google Scholar 

  • Klootwijk, C. T., Gee, J. S., Peirce, J. W., and Smith, G. M., 1992. Neogene evolution of the Himalayan-Tibetan region: Constraints from ODP758, northern Ninetyeast Ridge; bearing on climatic change. Palaeogeography, Palaeoclimatology, Palaeoecology, 95: 95–110.

    Article  Google Scholar 

  • Klump, J., Hebbeln, D., and Wefer, G., 2000. The impact of sediment provenance on barium-based productivity estimates. Marine Geology, 169(3–4): 259–271.

    Article  Google Scholar 

  • Klump, J., Hebbeln, D., and Wefer, G., 2001. High concentrations of biogenic barium in Pacific sediments after Termination I—A signal of changes in productivity and deep water chemistry. Marine Geology, 177(1): 1–11.

    Article  Google Scholar 

  • Liu, Q. Y., 2002. Pelagic sedimentary records and its palaeoenvironmental implication in Ninetyeast Ridge if the NE Indian Ocean since middle Miocene. Master thesis. China University of Geosciences.

  • Martinez-Ruiz, F., Jroundi, F., Paytan, A., Guerra-Tschuschke, I., Abad, M., and González-MuOz, M. T., 2018. Barium bioaccumulation by bacterial biofilms and implications for Ba cycling and use of Ba proxies. Nature Communications, 9(1): 1619.

    Article  Google Scholar 

  • Monnin, C., Jeandel, C., Cattaldo, T., and Dehairs, F., 1999. The marine barite saturation state of the world’s oceans. Marine Chemistry, 65: 253–261.

    Article  Google Scholar 

  • Paulmier, A., and Ruiz-Pino, D., 2009. Oxygen minimum zones (OMZs) in the modern ocean. Progress in Oceanography, 80: 113–128.

    Article  Google Scholar 

  • Paytan, A., and Griffith, E., 2007. Marine barite: Recorder of variations in ocean export productivity. Deep-Sea Research Part II: Topical Studies in Oceanography, 54: 687–705.

    Article  Google Scholar 

  • Paytan, A., Kastner, M., and Chavez, F. P., 1996. Glacial to interglacial fluctuations in productivity in the equatorial Pacific as indicated by marine barite. Science, 274: 1355–1357.

    Article  Google Scholar 

  • Paytan, A., Kastner, M., Martin, E. E., Macdougall, J. D., and Herbert, T., 1993. Marine barite as a monitor of seawater strontium isotope composition. Nature, 366: 445–448.

    Article  Google Scholar 

  • Prieto, M., Fernández-González, A., Putnis, A., and Fernández-Díaz, L., 1997. Nucleation, growth, and zoning phenomena in crystallizing (Ba, Sr)CO3, Ba(SO4, CrO4), (Ba, Sr) SO4, and (Cd, Ca)CO3 solid solutions from aqueous solutions. Geochimica et Cosmochimica Acta, 61: 3383–3397.

    Article  Google Scholar 

  • Prieto, M., Putnis, A., and Fernandez-Diaz, L., 1993. Crystallization of solid solution from aqueous solutions in a porous medium: Zoning in (Ba, Sr)SO4. Geological Magazine, 130: 289–299.

    Article  Google Scholar 

  • Putnis, A., Junta-Rosso, J. L., and Hochella, M. F., 1995. Dissolution of barite by a chelating ligand: An atomic force microscopy study. Geochimica et Cosmochimica Acta, 59: 4623–4632.

    Article  Google Scholar 

  • Pyle, K. M., Hendry, K. R., Sherrell, R. M., Legge, O., Hind, A. J., Bakker, D., et al., 2018. Oceanic fronts control the distribution of dissolved barium in the Southern Ocean. Marine Chemistry, 204: 95–106.

    Article  Google Scholar 

  • Qiao, B., Liu, Z., Zhang, S., Liu, C., and Li, P., 2014. Equatorial current system structure and hydrologic characteristics in monsoonal wind transition period. Advances in Marine Science, 32(3): 301–305 (in Chinese with English abstract).

    Google Scholar 

  • Rushdi, A. L., McManus, J., and Collier, R. W., 2000. Marine barite and celestite saturation in seawater. Marine Chemistry, 69: 19–31.

    Article  Google Scholar 

  • Singh, S. P., Singh, S. K., and Bhushan, R., 2013. Internal cycling of dissolved barium in water column of the Bay of Bengal. Marine Chemistry, 154: 12–23.

    Article  Google Scholar 

  • Sternberg, E., Jeandel, C., Miquel, J. C., Gasser, B., Souhaut, M., Arraes-Mescoff, R., et al., 2007. Particulate barium fluxes and export production in the northwestern Mediterranean. Marine Chemistry, 105: 281–295.

    Article  Google Scholar 

  • Stow, D. A. V., Amano, K., Balson, P. S., and Wijayananda, N. P., 1990. Sediment facies and processes on the distal Bengal Fan, Leg 116. Proceedings of the Ocean Drilling Program, Scientific Results, 116: 377–395.

    Google Scholar 

  • Sugiyama, M., Matsuil, M., and Nakayama, E., 1984. Direct determination of barium in sea water by inductively coupled plasma emission spectrometry. Journal of the Oceanographical Society of Japan, 40: 295–302.

    Article  Google Scholar 

  • Sun, X., 2011. Study on the suspended particulate minerals in the water column in the eastern equatorial Pacific Ocean and hydrothermal active areas in the Southwest Indian Ocean. PhD thesis. Ocean University of China.

  • Sun, X., Yang, Z., Fan, D., and Li, Y., 2015. Crystals of suspended marine barite in the eastern equatorial Pacific: Processes of dissolution and effects on crystal morphology. Chinese Journal of Oceanology and Limnology, 33(1): 194–203.

    Article  Google Scholar 

  • Stroobants, N., Dehairs, F., Goeyens, L., Vanderheijden, N., and Grieken, R. V., 1991. Barite formation in the Southern Ocean water column. Marine Chemistry, 35: 411–421.

    Article  Google Scholar 

  • Wang, K., Resch, R., Dunn, K., Shuler, P., Tang, Y., Koel, B. E., et al., 1999. Dissolution of the barite (001) surface by the chelating agent DTPA as studied with non-contact atomic force microscopy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 160: 217–227.

    Article  Google Scholar 

  • Wang, Y., Wang, B., Wei, Q., Sun, X., Xin, M., and Liu, L., 2018. Seasonal variation of hypoxic zone in the central eastern Indian Ocean. Advances in Marine Science, 36(2): 262–271 (in Chinese with English abstract).

    Google Scholar 

  • Wei, H., Fang, N., Ding, X., Nie, L., and Liu, X., 2007. Major environmental events reflected by pelagic records since 3.5 Ma BP in the Ninetyeast Ridge at the equator. Geological Bulletin of China, 26(12): 1627–1632.

    Google Scholar 

  • Wolgemuth, K., and Broecker, W. S., 1970. Barium in sea water. Earth and Planetary Science Letters, 8: 372–378.

    Article  Google Scholar 

  • Wyrtkik, 1973. An equatorial jet in the Indian Ocean. Science, 181(4096): 262–264.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the captain and the crew of the R/V Dayangyihao for field sampling assistance and Prof. Tan Jinshan of Qingdao University for assistance in SEM observations. This study was supported by the COMRA Major Project (No. DY135-S1-01-09), and the Opening Foundation of Key Laboratory of Submarine Geosciences and Prospecting Techniques, Ocean University of China (No. SGPT-2019OF-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bu, X., Liu, M., Ding, Y. et al. The Origin and Preservation of Suspended Barites near the 90°E Ridge in the Northeastern Indian Ocean. J. Ocean Univ. China 22, 88–98 (2023). https://doi.org/10.1007/s11802-023-5257-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-023-5257-6

Key words

Navigation