Skip to main content

Advertisement

Log in

Characterization of Bacterial Communities in Aerosols over Northern Chinese Marginal Seas and the Northwestern Pacific Ocean in Autumn

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

The characteristics of the bacterial community structure in aerosols of different particle sizes over northern Chinese marginal seas and the northwestern Pacific Ocean in autumn were analyzed using high-throughput sequencing and the quantitative real-time PCR method based on 16S rRNA genes. Combined with environmental factors and air mass sources, the bacterial abundance, community diversity, composition and structural characteristics in aerosols were studied, which might provide a scientific evaluation for a comprehensive understanding of the characteristics, long-distance transmission and ecological effects of aerosols from coastal waters to the distant ocean (northwestern Pacific Ocean). At the junction of the South Yellow Sea and the East China Sea, the bacterial abundance in the aerosols was substantially affected by transmission of continental air masses and was higher than those in other samples, and the bacterial abundance in coarse particle (> 2.1 µm) samples was significantly higher than that in fine particle (< 2.1 µm) samples (P < 0.05). In contrast, aerosols collected at the northwestern Pacific Ocean (NWP5 site) were less affected by transmissions of continental air masses, and their bacterial abundance in coarse particle samples was significantly lower than that in fine particle samples. Significant differences in the richness and diversity of bacterial communities were observed among all samples (P < 0.05). The differences in the bacterial community in different sea areas were greater than those in the same sample with different particle sizes (P > 0.05). Among the environmental factors examined, a significant negative correlation was observed between bacterial community richness and temperature (P < 0.05), and the bacterial community diversity was significantly positively correlated with the concentration of K+ (P < 0.05). Canonical correspondence analysis showed that temperature, NH4+ concentration and SO42− concentration exerted significant effects on bacterial community structures (P < 0.01) in aerosols of different particle sizes over northern Chinese marginal seas and the northwestern Pacific Ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aller, J. Y., Kuznetsova, M. R., Jahns, C. J., and Kemp, P. F., 2005. The sea surface microlayer as a source of viral and bacterial enrichment in marine aerosols. Journal of Aerosol Science, 36(5–6): 801–812.

    Article  Google Scholar 

  • Ammendolia, M. G., Bertuccini, L., Minelli, F., Meschini, S., and Baldassarri, L., 2004. A Sphingomonas bacterium interacting with epithelial cells. Research in Microbiology, 155(8): 636–646.

    Article  Google Scholar 

  • An, S., Sin, H. H., and DuBow, M. S., 2015. Modification of atmospheric sand-associated bacterial communities during Asian sandstorms in China and South Korea. Heredity, 114(5SI): 460–467.

    Article  Google Scholar 

  • Archer, S. D. J., Lee, K. C., Caruso, T., King-Miaow, K., Harvey, M., and Huang, D., 2020. Air mass source determines airborne microbial diversity at the ocean-atmosphere interface of the Great Barrier Reef marine ecosystem. ISME Journal, 14(3): 871–876.

    Article  Google Scholar 

  • Ariya, P. A., and Amyot, M., 2004. New directions: The role of bioaerosols in atmospheric chemistry and physics. Atmospheric Environment, 38(8): 1231–1232.

    Article  Google Scholar 

  • Bokulich, N. A., Kaehler, B. D., Rideout, J. R., Dillon, M., Bolyen, E., Knight, R., et al., 2018. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome, 6(90): 1–17.

    Google Scholar 

  • Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith, G. A., et al., 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 37(8): 852–857.

    Article  Google Scholar 

  • Bowers, R. M., McLetchie, S., Knight, R., and Fierer, N., 2011. Spatial variability in airborne bacterial communities across land-use types and their relationship to the bacterial communities of potential source environments. ISME Journal, 5(4): 601–612.

    Article  Google Scholar 

  • Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., and Holmes, S. P., 2016. DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods, 13(7): 581–583.

    Article  Google Scholar 

  • Cho, B. C., and Hwang, C. Y., 2011. Prokaryotic abundance and 16S rRNA gene sequences detected in marine aerosols on the East Sea (Korea). FEMS Microbiology Ecology, 76(2): 327–341.

    Article  Google Scholar 

  • Clarke, A. D., Owens, S. R., and Zhou, J. C., 2006. An ultrafine sea-salt flux from breaking waves: Implications for cloud condensation nuclei in the remote marine atmosphere. Journal of Geophysical Research-Atmospheres, 111(D6): 1–14.

    Article  Google Scholar 

  • Dong, L., Qi, J., Shao, C., Zhong, X., Gao, D., Cao, W., et al., 2016. Concentration and size distribution of total airborne microbes in hazy and foggy weather. Science of the Total Environment, 541: 1011–1018.

    Article  Google Scholar 

  • Dueker, M. E., Weathers, K. C., Mullan, G. D., Juhl, A. R., and Uriarte, M., 2011. Environmental controls on coastal coarse aerosols: Implications for microbial content and deposition in the near-shore environment. Environmental Science & Technology, 45(8): 3386–3392.

    Article  Google Scholar 

  • Gandolfi, I., Bertolini, V., Ambrosini, R., Bestetti, G., and Franzetti, A., 2013. Unravelling the bacterial diversity in the atmosphere. Applied Microbiology and Biotechnology, 97(11): 4727–4736.

    Article  Google Scholar 

  • Gong, J., Qi, J., Yin, Y., and Gao, D., 2020. Concentration, viability and size distribution of bacteria in atmospheric bioaerosols under different types of pollution. Environmental Pollution, 257: 1–11.

    Article  Google Scholar 

  • Harrison, R. M., Jones, A. M., Biggins, P., Pomeroy, N., Cox, C. S., Kidd, S. P., et al., 2005. Climate factors influencing bacterial count in background air samples. International Journal of Biometeorology, 49(3): 167–178.

    Article  Google Scholar 

  • Horvath, H., Kasaharat, M., and Pesava, P., 1996. The size distribution and composition of the atmospheric aerosol at a rural and nearby urban location. Journal of Aerosol Science, 27(3): 417–435.

    Article  Google Scholar 

  • Hu, W., Murata, K., Fukuyama, S., Kawai, Y., Oka, E., Uematsu, M., et al., 2017. Concentration and viability of airborne bacteria over the Kuroshio extension region in the northwestern Pacific Ocean: Data from three cruises. Journal of Geophysical Research-Atmospheres, 122(23): 12892–12905.

    Article  Google Scholar 

  • Hua, N., Kobayashi, F., Iwasaka, Y., Shi, G., and Naganuma, T., 2007. Detailed identification of desert-originated bacteria carried by Asian dust storms to Japan. Aerobiologia, 23(4): 291–298.

    Article  Google Scholar 

  • Jeon, E. M., Kim, H. J., Jung, K., Kim, J. H., Kim, M. Y., Kim, Y. P., et al., 2011. Impact of Asian dust events on airborne bacterial community assessed by molecular analyses. Atmospheric Environment, 45(25): 4313–4321.

    Article  Google Scholar 

  • Jones, A. M., and Harrison, R. M., 2004. The effects of meteorological factors on atmospheric bioaerosol concentrations — A review. Science of the Total Environment, 326(1–3): 151–180.

    Article  Google Scholar 

  • Kellogg, C. A., and Griffin, D. W., 2006. Aerobiology and the global transport of desert dust. Trends in Ecology & Evolution, 21(11): 638–644.

    Article  Google Scholar 

  • Köljalg, U., Nilsson, R. H., Abarenkov, K., Tedersoo, L., Taylor, A. F. S., Bahram, M., et al., 2013. Towards a unified paradigm for sequence-based identification of fungi. Molecular Ecology, 22(21): 5271–5277.

    Article  Google Scholar 

  • Kowalski, M., and Pastuszka, J. S., 2018. Effect of ambient air temperature and solar radiation on changes in bacterial and fungal aerosols concentration in the urban environment. Annals of Agricultural and Environmental Medicine, 25(2): 259–261.

    Article  Google Scholar 

  • Ku, S. C., Hsueh, P. R., Yang, P. C., and Luh, K. T., 2000. Clinical and microbiological characteristics of bacteremia caused by Acinetobacter lwoffii. European Journal of Clinical Microbiology and Infectious Diseases, 19(7): 501–505.

    Article  Google Scholar 

  • Li, M., Qi, J., Zhang, H., Huang, S., Li, L., and Gao, D., 2011. Concentration and size distribution of bioaerosols in an outdoor environment in the Qingdao coastal region. Science of the Total Environment, 409(19): 3812–3819.

    Article  Google Scholar 

  • Lighthart, B., and Shaffer, B. T., 1995. Viable bacterial aerosol particle size distributions in the midsummer atmosphere at an isolated location in the high desert chaparral. Aerobiologia, 11(1): 19–25

    Article  Google Scholar 

  • Lu, R., Li, Y., Li, W., Xie, Z., Fan, C., Liu, P., et al., 2018. Bacterial community structure in atmospheric particulate matters of different sizes during the haze days in Xi’an, China. Science of the Total Environment, 637–638: 244–252.

    Article  Google Scholar 

  • Ma, M., Zhang, B., Chen, Y., Feng, W., Mi, T., Qi, J., et al., 2020. Characterization of bacterial communities during persistent fog and haze events in the Qingdao coastal region. Frontiers of Environmental Science & Engineering, 15(3): 1–13.

    Google Scholar 

  • Ma, M., Zhen, Y., and Mi, T., 2019. Characterization of bacterial communities in bioaerosols over northern Chinese marginal seas and the northwestern Pacific Ocean in spring. Journal of Applied Meteorology and Climatology, 58(4): 903–917.

    Article  Google Scholar 

  • Mandrioli, P., 1998. Basic aerobiology. Aerobiologia, 14(2–3): 89–94.

    Article  Google Scholar 

  • Polymenakou, P. N., Mandalakis, M., Stephanou, E. G., and Tselepides, A., 2008. Particle size distribution of airborne microorganisms and pathogens during an intense African dust event in the eastern Mediterranean. Environmental Health Perspectives, 116(3): 292–296.

    Article  Google Scholar 

  • Qi, J. H., Gao, H. W., Yu, L. M., and Qiao, J. J., 2011. Distribution of inorganic nitrogen-containing species in atmospheric particles from an island in the Yellow Sea. Atmospheric Research, 101(4): 938–955.

    Article  Google Scholar 

  • Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., et al., 2013. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Research, 41(D1): D590–D596.

    Article  Google Scholar 

  • Roggenbuck, M., Bærholm, S. I., Blom, N., Bælum, J., Bertelsen, M. F., Sicheritz-Pontén, T., et al., 2014. The microbiome of new world vultures. Nature Communications, 5(1): 1–7.

    Article  Google Scholar 

  • Seifried, J. S., Wichels, A., and Gerdts, G., 2015. Spatial distribution of marine airborne bacterial communities. Microbiology Open, 4(3): 475–490.

    Article  Google Scholar 

  • Seitzinger, S. P., and Sanders, R. W., 1999. Atmospheric inputs of dissolved organic nitrogen stimulate estuarine bacteria and phytoplankton. Limnology and Oceanography, 44(3): 721–730.

    Article  Google Scholar 

  • Serrano-Silva, N., and Calderón-Ezquerro, M. C., 2018. Metagenomic survey of bacterial diversity in the atmosphere of Mexico City using different sampling methods. Environmental Pollution, 235: 20–29.

    Article  Google Scholar 

  • Singh, H. B., Anderson, B. E., Avery, M. A., Viezee, W., Chen, Y., Tabazadeh, A., et al., 2002. Global distribution and sources of volatile and nonvolatile aerosol in the remote troposphere. Journal of Geophysical Research: Atmospheres, 107(D11): ACH 7–1–ACH 7–10.

    Article  Google Scholar 

  • Smith, D. J., Timonen, H. J., Jaffe, D. A., Griffin, D. W., Birmele, M. N., Perry, K. D., et al., 2013. Intercontinental dispersal of bacteria and archaea by transpacific winds. Applied and Environmental Microbiology, 79(4): 1134–1139.

    Article  Google Scholar 

  • Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D., and Ngan, F., 2015. NOAA’s hysplit atmospheric transport and dispersion modeling system. Bulletin of the American Meteorological Society, 96(12): 2059- 2077.

    Article  Google Scholar 

  • van Doorn, R., Szemes, M., Bonants, P., Kowalchuk, G. A., Salles, J. F., Ortenberg, E., et al., 2007. Quantitative multiplex detection of plant pathogens using a novel ligation probe-based system coupled with universal, high-throughput real-time PCR on OpenArrays (TM). BMC Genomics, 8(276): 1–14.

    Google Scholar 

  • Veron, F., 2015. Ocean spray. Annual Review of Fluid Mechanics, 47(1): 507–538.

    Article  Google Scholar 

  • Wei, M., Xu, C., Xu, X., Zhu, C., Li, J., and Lv, G., 2019. Characteristics of atmospheric bacterial and fungal communities in PM2.5 following biomass burning disturbance in a rural area of North China Plain. Science of the Total Environment, 651: 2727–2739.

    Article  Google Scholar 

  • Xia, X., Wang, J., Ji, J., Zhang, J., Chen, L., and Zhang, R., 2015. Bacterial communities in marine aerosols revealed by 454 pyrosequencing of the 16S rRNA gene. Journal of the Atmospheric Science, 72(8): 2997–3008.

    Article  Google Scholar 

  • Xie, Z., Li, Y., Lu, R., Li, W., Fan, C., Liu, P., et al., 2018. Characteristics of total airborne microbes at various air quality levels. Journal of Aerosol Science, 116: 57–65.

    Article  Google Scholar 

  • Xu, C., Wei, M., Chen, J., Zhu, C., Li, J., Lv, G., et al., 2017. Fungi diversity in PM2.5 and PM1 at the summit of Mt. Tai: Abundance, size distribution, and seasonal variation. Atmospheric Chemistry and Physics, 17(18): 11247–11260.

    Article  Google Scholar 

  • Yu, J., Hu, Q., Xie, Z., Kang, H., Li, M., Li, Z., et al., 2013. Concentration and size distribution of fungi aerosol over oceans along a cruise path during the Fourth Chinese Arctic Research Expedition. Atmosphere, 4(4): 337–348.

    Article  Google Scholar 

  • Zhang, T., Li, X., Wang, M., Chen, H., and Yao, M., 2019. Microbial aerosol chemistry characteristics in highly polluted air. Science China Chemistry, 62(8): 1051–1063.

    Article  Google Scholar 

  • Zhen, Q., Deng, Y., Wang, Y., Wang, X., Zhang, H., Sun, X., et al., 2017. Meteorological factors had more impact on airborne bacterial communities than air pollutants. Science of the Total Environment, 601–602: 703–712.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (No. 41775148), the Fundamental Research Funds for the Central Universities (No. 201762006), and the Shandong Provincial Natural Science Foundation, China (No. ZR2016CB47). Data acquisition and sample collections were obtained from the shared cruise organized by the Global Ocean Fleet of Pilot National Laboratory for Marine Science and Technology (Qingdao) and conducted onboard R/V3 Dongfanghong by the Ocean University of China. We express our appreciation to Dr. Yidan Yin for assisting with sampling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Zhen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Zhen, Y., Mi, T. et al. Characterization of Bacterial Communities in Aerosols over Northern Chinese Marginal Seas and the Northwestern Pacific Ocean in Autumn. J. Ocean Univ. China 22, 136–150 (2023). https://doi.org/10.1007/s11802-023-5243-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-023-5243-z

Key words

Navigation