Skip to main content

Advertisement

Log in

Allelopathic Interactions Between the Tropical Macrophyte Enhalus acoroides and Epibenthic HAB Dinoflagellate Prorocentrum concavum

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

A benthic harmful dinoflagellate bloom caused by Prorocentrum concavum occurred at Xincun Bay, a lagoon characterized by a tropical seagrass ecosystem in the southern China, in summer 2018. Both abiotic and biotic factors may affect the abundance dynamics of P. concavum. One of the biotic factors, allelopathy, is known to be especially common among aquatic species and is suggested to be an economical and environmentally-friendly way to eliminate Benthic Harmful Algal Blooms (BHABs). To investigate the possible allelopathic interactions between seagrasses and P. concavum, a field survey was conducted to study the cell densities of P. concavum on four major substrates over 12 months. In laboratory, fresh Enhalus acoroides leaves and a crude aqueous extract of dry E. acoroides leaves were added to the culture of P. concavum respectively to assess possible effects on the growth and photosynthesis activities of P. concavum cells. Our results showed that the average abundance of P. concavum on E. acoroides leaves was statistically lower than that on the sediment outside the seagrass meadow and that on Thalassia hemperichii leaves. Both the growth and photosynthesis activities of P. concavum cells were inhibited in the two experiments, which can be attributed to the release and production of allelochemicals by E. acoroides. Our results offer new insights into the interaction between the submerged seagrass E. acoroides and the benthic harmful algal bloom dinoflagellate P. concavum, which can influence the abundance dynamics of P. concavum and provide an alternative for reducing potential threat of BHABs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Accoroni, S., Percopo, I., Cerino, F., Romagnoli, T., Pichierri, S., Perrone, C., et al., 2015. Allelopathic interactions between the HAB dinoflagellate Ostreopsis cf. ovata and macroalgae. Harmful Algae, 49: 147–155, DOI: https://doi.org/10.1016/j.hal.2015.08.007.

    Article  Google Scholar 

  • Amorim, C. A., Moura-Falcão, R. H. D., Valença, C. R., Souza, V. R. D., and Moura, A. D. N., 2019. Allelopathic effects of the aquatic macrophyte Ceratophyllum demersum L. on phytoplankton species: Contrasting effects between cyanobacteria and chlorophytes. Acta Limnologica Brasiliensia, 31: e21, DOI: https://doi.org/10.1590/s2179-975x1419.

    Article  Google Scholar 

  • An, T., Winshell, J., Scorzetti, G., Fell, J. W., and Rein, K. S., 2010. Identification of okadaic acid production in the marine dinoflagellate Prorocentrum rhathymum from Florida Bay. Toxicon, 55(2): 653–657, DOI: https://doi.org/10.1016/j.toxicon.2009.08.018.

    Article  Google Scholar 

  • Athiperumalsami, T., Kumar, V., and Jesudass, L. L., 2008. Survey and phytochemical analysis of seagrasses in the Gulf of Mannar, southeast coast of India. Botanica Marina, 51(4): 8, DOI: https://doi.org/10.1515/BOT.2008.038.

    Article  Google Scholar 

  • Ben Gharbia, H., Kefi-Daly Yahia, O., Cecchi, P., Masseret, E., Amzil, Z., Herve, F., et al., 2017. New insights on the species-specific allelopathic interactions between macrophytes and marine HAB dinoflagellates. PLoS One, 12(11): e0187963, DOI: https://doi.org/10.1371/journal.pone.0187963.

    Article  Google Scholar 

  • Bendschneider, K., and Robinson, R. J., 1952. A new spectrophotometric method for the determination of nitrite in sea water. Marine Research, 11: 87–96.

    Google Scholar 

  • Berdalet, E., Tester, P. A., Chinain, M., Fraga, S., Lemée, R., Litaker, W., et al., 2017. Harmful algal blooms in benthic systems: Recent progress and future research. Oceanography, 30(1): 36–45.

    Article  Google Scholar 

  • Biré, R., Trotereau, S., Lemée, R., Delpont, C., Chabot, B., Aumond, Y., et al., 2013. Occurrence of palytoxins in marine organisms from different trophic levels of the French Mediterranean coast harvested in 2009. Harmful Algae, 28: 10–22, DOI: https://doi.org/10.1016/j.hal.2013.04.007.

    Article  Google Scholar 

  • Boisnoir, A., Pascal, P. Y., Cordonnier, S., and Lemee, R., 2019. Spatio-temporal dynamics and biotic substrate preferences of benthic dinoflagellates in the Lesser Antilles, Caribbean Sea. Harmful Algae, 81: 18–29, DOI: https://doi.org/10.1016/j.hal.2018.11.012.

    Article  Google Scholar 

  • Ciminiello, P., Dell’Aversano, C., Fattorusso, E., Forino, M., Tartaglione, L., Grillo, C., et al., 2008. Putative palytoxin and its new analogue, ovatoxin-a, in Ostreopsis ovata collected along the ligurian coasts during the 2006 toxic outbreak. Journal of the American Society for Mass Spectrometry, 19(1): 111–120, DOI: https://doi.org/10.1016/j.jasms.2007.11.001.

    Article  Google Scholar 

  • Ciminiello, P., Dell’Aversano, C., Iacovo, E. D., Fattorusso, E., Forino, M., Tartaglione, L., et al., 2012. Unique toxin profile of a Mediterranean Ostreopsis cf. ovata strain: HR LC-MSn characterization of ovatoxin-f, a new palytoxin congener. Chemical Research in Toxicology, 25(6): 1243–1252, DOI: https://doi.org/10.1021/tx300085e.

    Article  Google Scholar 

  • D’Abrosca, B., Dellagreca, M., Fiorentino, A., Isidori, M., Monaco, P., and Pacifico, S., 2006. Chemical constituents of the aquatic plant Schoenoplectus lacustris: Evaluation of phytotoxic effects on the green alga Selenastrum capricornutum. Journal of Chemical Ecology, 32(1): 81–96, DOI: https://doi.org/10.1007/s10886-006-9354-y.

    Article  Google Scholar 

  • Deeds, J. R., and Schwartz, M. D., 2010. Human risk associated with palytoxin exposure. Toxicon, 56(2): 150–162, DOI: https://doi.org/10.1016/j.toxicon.2009.05.035.

    Article  Google Scholar 

  • Delgado, G., Lechuga-Devéze, C. H., Popowski, G., Troccoli, L., and Salinas, C. A., 2006. Epiphytic dinoflagellates associated with ciguatera in the northwestern coast of Cuba. Revista de Biología Tropical, 54: 299–310.

    Article  Google Scholar 

  • Filzgerald, G. P., 1969. Some factors in the competition or antagonism among bacteria, algae, and aquatic weeds. Journal of Phycology, 5(4): 351–359, DOI: https://doi.org/10.1111/j.1529-8817.1969.tb02625.x.

    Article  Google Scholar 

  • Fraga, S., Rodríguez, F., Bravo, I., Zapata, M., and Maraãón, E., 2012. Review of the main ecological features affecting benthic dinoflagellate blooms. Cryptogamie, Algologie, 33(2): 171–179.

    Article  Google Scholar 

  • Frodge, J. D., Thomas, G. L., and Pauley, G. B., 1990. Effects of canopy formation by floating and submergent aquatic macrophytes on the water quality of two shallow Pacific Northwest lakes. Aquatic Botany, 38(2): 231–248, DOI: https://doi.org/10.1016/0304-3770(90)90008-9.

    Article  Google Scholar 

  • GEOHAB, 2012. Global Ecology and Oceanography of Harmful Algal Blooms Core Research Project: HABs in Benthic Systems. Berdalet, E., et al., eds., IOC of UNESCO and SCOR, Paris and Newark, 64pp.

  • Giussani, V., Asnaghi, V., Pedroncini, A., and Chiantore, M., 2017. Management of harmful benthic dinoflagellates requires targeted sampling methods and alarm thresholds. Harmful Algae, 68: 97–104, DOI: https://doi.org/10.1016/j.hal.2017.07.010.

    Article  Google Scholar 

  • GlobalHAB, 2017. Global Harmful Algal Blooms, Science and Implementation Plan. Berdalet, E., et al., eds., IOC of UNESCO and SCOR, Delaware and Paris, 64pp.

  • Gregg, W. W., and Rose, F. L., 1982. The effects of aquatic macrophytes on the stream microenvironment. Aquatic Botany, 14: 309–324, DOI: https://doi.org/10.1016/0304-3770(82)90105-X.

    Article  Google Scholar 

  • Gross, E. M., 2003. Allelopathy of aquatic autotrophs. Critical Reviews in Plant Sciences, 22(3–4): 313–339, DOI: https://doi.org/10.1080/713610859.

    Article  Google Scholar 

  • Gross, E. M., and Sütfeld, R., 1994. Polyphenols with algicidal activity in the submerged macrophyte Myriophyllum spicatum L. Acta Hortic. International Society for Horticultural Science (ISHS). Leuven, Belgium, 710–716.

    Google Scholar 

  • Gross, E. M., Erhard, D., and Iványi, E., 2003. Allelopathic activity of Ceratophyllum demersum L. and Najas marina ssp. intermedia (Wolfgang) Casper. Hydrobiologia, 506(1): 583–589, DOI: https://doi.org/10.1023/B:HYDR.0000008539.32622.91.

    Article  Google Scholar 

  • Guillard, R. L. R., 1973. Division rates. In: Handbook of Phycological Methods: Cultures Methods and Growth Measurements. Stein, J. R., ed., Cambridge University Press, Cambridge, 290–311.

    Google Scholar 

  • Harrison, P. G., and Chan, A. T., 1980. Inhibition of the growth of micro-algae and bacteria by extracts of eelgrass (Zostera marina) leaves. Marine Biology, 61(1): 21–26, DOI: https://doi.org/10.1007/BF00410338.

    Article  Google Scholar 

  • Harrison, P. J., Waters, R. E., and Taylor, F. J. R., 1980. A broad spectrum artificial sea water medium for coastal and open ocean phytoplankton. Journal of Phycology, 16(1): 28–35, DOI: https://doi.org/10.1111/j.0022-3646.1980.00028.x.

    Google Scholar 

  • Hilt, S., Ghobrial, M. G. N., and Gross, E. M., 2006. In situ allelopathic potential of Myriophyllum Verticillatum (Haloragaceae) against selected phytoplankton species Journal of Phycology, 42(6): 1189–1198, DOI: https://doi.org/10.1111/j.1529-8817.2006.00286.x.

    Article  Google Scholar 

  • Hoshaw, R. W., and Rosowski, J. R., 1973. Methods for microscopic algae. In: Handbook of Phycological Methods. Stein, J. R., ed., Cambridge University Press, New York, 53–67.

    Google Scholar 

  • Hu, H., and Hong, Y., 2008. Algal-bloom control by allelopathy of aquatic macrophytes-A review. Frontiers of Environmental Science & Engineering in China, 2(4): 421–438, DOI: https://doi.org/10.1007/s11783-008-0070-4.

    Article  Google Scholar 

  • Huang, D. J., and Huang, X. P., 2009. Effects of caged fish farm on the biological and ecological characteristics of Enhalus acoroides in Xincun Lagoon of Hainan, China. Journal of Oceanography in Taiwan Strait, 28(2): 199–204.

    Google Scholar 

  • Jeong, J. H., Jin, H. J., Sohn, C. H., Suh, K. H., and Hong, Y. K., 2000. Algicidal activity of the seaweed Corallina pilulifera against red tide microalgae. Journal of Applied Phycology, 12(1): 37–43, DOI: https://doi.org/10.1023/A:1008139129057.

    Article  Google Scholar 

  • Kannan, R. R. R., Arumugam, R., and Anantharaman, P., 2010. In vitro antioxidant activities of ethanol extract from Enhalus acoroides (L.F.) Royle. Asian Pacific Journal of Tropical Medicine, 3(11): 898–901, DOI: https://doi.org/10.1016/S1995-7645(10)60216-7.

    Article  Google Scholar 

  • Kannan, R. R. R., Arumugam, R., and Anantharaman, P., 2012. Chemical composition and antibacterial activity of Indian seagrasses against urinary tract pathogens. Food Chemistry, 135(4): 2470–2473, DOI: https://doi.org/10.1016/j.foodchem.2012.07.070.

    Article  Google Scholar 

  • Laabir, M., Grignon-Dubois, M., Masseret, E., Rezzonico, B., Soteras, G., Rouquette, M., et al., 2013. Algicidal effects of Zostera marina L. and Zostera noltii Hornem. extracts on the neuro-toxic bloom-forming dinoflagellate Alexandrium catenella. Aquatic Botany, 111: 16–25, DOI: https://doi.org/10.1016/j.aquabot.2013.07.010.

    Article  Google Scholar 

  • Leu, E., Krieger-Liszkay, A., Goussias, C., and Gross, E. M., 2002. Polyphenolic allelochemicals from the aquatic angiosperm Myriophyllum spicatum inhibit photosystem II. Plant Physiology, 130(4): 2011–2018, DOI: https://doi.org/10.1104/pp.011593.

    Article  Google Scholar 

  • Li, A., Ma, J., Cao, J., and McCarron, P., 2012. Toxins in mussels (Mytilus galloprovincialis) associated with diarrhetic shellfish poisoning episodes in China. Toxicon, 60(3): 420–425, DOI: https://doi.org/10.1016/j.toxicon.2012.04.339.

    Article  Google Scholar 

  • Luo, Z., Zhang, H., Krock, B., Lu, S., Yang, W., and Gu, H., 2017. Morphology, molecular phylogeny and okadaic acid production of epibenthic Prorocentrum (Dinophyceae) species from the northern South China Sea. Algal Research, 22: 14–30, DOI: https://doi.org/10.1016/j.algal.2016.11.020.

    Article  Google Scholar 

  • Morton, S. L., Faust, M. A., Fairey, E. A., and Moeller, P. D., 2002. Morphology and toxicology of Prorocentrum arabianum sp. nov., (Dinophyceae) a toxic planktonic dinoflagellate from the Gulf of Oman, Arabian Sea. Harmful Algae, 1(4): 393–400.

    Article  Google Scholar 

  • Mulderij, G., Mau, B., de Senerpont Domis, L. N., Smolders, A. J. P., and Van Donk, E., 2009. Interaction between the macrophyte Stratiotes aloides and filamentous algae: Does it indicate allelopathy?. Aquatic Ecology, 43(2): 305–312, DOI: https://doi.org/10.1007/s10452-008-9194-7.

    Article  Google Scholar 

  • Mullin, J. B., and Riley, J. P., 1955. The spectrophotometric determination of nitrate in natural waters, with particular reference to sea-water. Analytica Chimica Acta, 12: 464–480, DOI: https://doi.org/10.1016/S0003-2670(00)87865-4.

    Article  Google Scholar 

  • Murphy, J., and Riley, J. P., 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27: 31–36, DOI: https://doi.org/10.1016/S0003-2670(00)88444-5.

    Article  Google Scholar 

  • Nakai, S., Inoue, Y., Hosomi, M., and Murakami, A., 2000. Myriophyllum spicatum-released allelopathic polyphenols inhibiting growth of blue-green algae Microcystis aeruginosa. Water Research, 34(11): 3026–3032, DOI: https://doi.org/10.1016/S0043-1354(00)00039-7.

    Article  Google Scholar 

  • Nascimento, S. M., Mendes, M. C. Q., Menezes, M., Rodríguez, F., Alves-de-Souza, C., Branco, S., et al., 2017. Morphology and phylogeny of Prorocentrum caipirignum sp. nov. (Dinophyceae), a new tropical toxic benthic dinoflagellate. Harmful Algae, 70: 73–89, DOI: https://doi.org/10.1016/j.hal.2017.11.001.

    Article  Google Scholar 

  • Pakdel, F. M., Sim, L., Beardall, J., and Davis, J., 2013. Allelopathic inhibition of microalgae by the freshwater stonewort, Chara australis, and a submerged angiosperm, Potamogeton crispus. Aquatic Botany, 110: 24–30, DOI: https://doi.org/10.1016/j.aquabot.2013.04.005.

    Article  Google Scholar 

  • Parsons, M. L., and Preskitt, L. B., 2007. A survey of epiphytic dinoflagellates from the coastal waters of the island of Hawai‘i. Harmful Algae, 6(5): 658–669, DOI: https://doi.org/10.1016/j.hal.2007.01.001.

    Article  Google Scholar 

  • Paul, V. J., Nelson, S. G., and Sanger, H. R., 1990. Feeding preferences of adult and juvenile rabbitfish Siganus argenteus in relation to chemical defenses of tropical seaweeds. Marine Ecology Progress Series. Oldendorf, 60(1): 23–34.

    Article  Google Scholar 

  • Pawlik, J. R., 1993. Marine invertebrate chemical defenses. Chemical Reviews, 93(5): 1911–1922.

    Article  Google Scholar 

  • Platt, T., Gallegos, C. L., and Harrison, W. G., 1980. Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. Journal of Marine Research, 38(4): 687–701.

    Google Scholar 

  • Qi, S. H., Zhang, S., Qian, P. Y., and Wang, B. G., 2008. Antifeedant, antibacterial, and antilarval compounds from the South China Sea seagrass Enhalus acoroides. Botanica Marina, 51(5): 441, DOI: https://doi.org/10.1515/BOT.2008.054.

    Article  Google Scholar 

  • Rajeshwari, M., 1990. Seagrass ecosystem of Coromandel coast. Final report submitted to Department of Chemical Engineering, IIT Madras, 167pp.

  • Richlen, M. L., and Lobel, P. S., 2011. Effects of depth, habitat, and water motion on the abundance and distribution of ciguatera dinoflagellates at Johnston Atoll, Pacific Ocean. Marine Ecology Progress Series, 421: 51–66.

    Article  Google Scholar 

  • Romero, J., Lee, K. S., Pérez, M., Mateo, M. A., and Alcoverro, T., 2006. Nutrient dynamics in seagrass ecosystems. In: Seagrasses: Biology, Ecology and Conservation. Larkum, A. W. D., et al., eds., Springer, Dordrecht, The Netherlands, 227–254.

    Google Scholar 

  • Rossi, R., Castellano, V., Scalco, E., Serpe, L., Zingone, A., and Soprano, V., 2010. New palytoxin-like molecules in Mediterranean Ostreopsis cf. ovata (dinoflagellates) and in Palythoa tuberculosa detected by liquid chromatography-electrospray ionization time-of-flight mass spectrometry. Toxicon, 56(8): 1381–1387, DOI: https://doi.org/10.1016/j.toxicon.2010.08.003.

    Article  Google Scholar 

  • Smayda, T. J., 1997. Harmful algal blooms: Their ecophysiology and general relevance to phytoplankton blooms in the sea. Limnology and Oceanography, 42(5 part2): 1137–1153, DOI: https://doi.org/10.4319/lo.1997.42.5_part_2.1137.

    Article  Google Scholar 

  • Su, M., and Koike, K., 2013. A red tide off the Myanmar coast: Morphological and genetic identification of the dinoflagellate composition. Harmful Algae, 27: 149–158, DOI: https://doi.org/10.1016/j.hal.2013.05.010.

    Article  Google Scholar 

  • Sugahara, K., Kitamura, Y., Murata, M., Satake, M., and Tachibana, K., 2011. Prorocentrol, a polyoxy linear carbon chain compound isolated from the toxic dinoflagellate Prorocentrum hoffmannianum. The Journal of Organic Chemistry, 76(9): 3131–3138, DOI: https://doi.org/10.1021/jo102585k.

    Article  Google Scholar 

  • Tang, Y. Z., and Gobler, C. J., 2011. The green macroalga, Ulva lactuca, inhibits the growth of seven common harmful algal bloom species via allelopathy. Harmful Algae, 10(5): 480–488, DOI: https://doi.org/10.1016/j.hal.2011.03.003.

    Article  Google Scholar 

  • Ten-Hage, L., Robillot, C., Turquet, J., Le Gall, F., Le Caer, J. P., Bultel, V., et al., 2002. Effects of toxic extracts and purified borbotoxins from Prorocentrum borbonicum (Dinophyceae) on vertebrate neuromuscular junctions. Toxicon, 40(2): 137–148, DOI: https://doi.org/10.1016/S0041-0101(01)00200-8.

    Article  Google Scholar 

  • Tester, P. A., Kibler, S. R., Holland, W. C., Usup, G., Vandersea, M. W., Leaw, C. P., et al., 2014. Sampling harmful benthic dinoflagellates: Comparison of artificial and natural substrate methods. Harmful Algae, 39: 8–25, DOI: https://doi.org/10.1016/j.hal.2014.06.009.

    Article  Google Scholar 

  • Thomas, L. C., Nandan, S. B., and Padmakumar, K. B., 2021. First report on an unusual bloom of the potentially toxic epibenthic dinoflagellate Prorocentrum rhathymum from Bangaram Lagoon of the Lakshadweep archipelago: Arabian Sea. Regional Studies in Marine Science, 41: 101549, DOI: https://doi.org/10.1016/j.rsma.2020.101549.

    Article  Google Scholar 

  • Torigoe, K., Murata, M., Yasumoto, T., and Iwashita, T., 1988. Prorocentrolide, a toxic nitrogenous macrocycle from a marine dinoflagellate, Prorocentrum lima. Journal of the American Chemical Society, 110(23): 7876–7877.

    Article  Google Scholar 

  • Totti, C., Accoroni, S., Cerino, F., Cucchiari, E., and Romagnoli, T., 2010. Ostreopsis ovata bloom along the Conero Riviera (northern Adriatic Sea): Relationships with environmental conditions and substrata. Harmful Algae, 9(2): 233–239, DOI: https://doi.org/10.1016/j.hal.2009.10.006.

    Article  Google Scholar 

  • Tubaro, A., Florio, C., Luxich, E., Sosa, S., Loggia, R. D., and Yasumoto, T., 1996. A protein phosphatase 2A inhibition assay for a fast and sensitive assessment of okadaic acid contamination in mussels. Toxicon, 34(7): 743–752, DOI: https://doi.org/10.1016/0041-0101(96)00027-X.

    Article  Google Scholar 

  • Turkoglu, M., 2016. First harmful algal bloom record of tycoplanktonic dinoflagellate Prorocentrum lima (Ehrenberg) F. Stein, 1878 in the Dardanelles (Turkish Straits System, Turkey). Journal of Coastal Life Medicine, 4(10): 765–774.

    Article  Google Scholar 

  • Vale, P., and Sampayo, M. A. D. M., 2002. First confirmation of human diarrhoeic poisonings by okadaic acid esters after ingestion of razor clams (Solen marginatus) and green crabs (Carcinus maenas) in Aveiro lagoon, Portugal and detection of okadaic acid esters in phytoplankton. Toxicon, 40(7): 989–996, DOI: https://doi.org/10.1016/S0041-0101(02)00095-8.

    Article  Google Scholar 

  • Vanderstukken, M., Mazzeo, N., Colen, W. V., Declerck, S. A. J., and Muylaert, K., 2011. Biological control of phytoplankton by the subtropical submerged macrophytes Egeria densa and Potamogeton illinoensis: A mesocosm study. Freshwater Biology, 56(9): 1837–1849, DOI: https://doi.org/10.1111/j.1365-2427.2011.02624.x.

    Article  Google Scholar 

  • Willis, R. J., 1985. The historical bases of the concept of allelopathy. Journal of the History of Biology, 18(1): 71–102, DOI: https://doi.org/10.1007/BF00127958.

    Article  Google Scholar 

  • Wu, C., Chang, X. X., Dong, H. J., Li, D. F., and Liu, J. Y., 2008. Allelopathic inhibitory effect of Myriophyllum aquaticum (Vell.) Verdc. on Microcystis aeruginosa and its physiological mechanism. Acta Ecologica Sinica, 28(6): 2595–2603, DOI: https://doi.org/10.1016/S1872-2032(08)60061-X.

    Article  Google Scholar 

  • Yang, D., and Yang, C., 2009. Detection of seagrass distribution changes from 1991 to 2006 in Xincun Bay, Hainan, with satellite remote sensing. Sensors, 9: 830–844.

    Article  Google Scholar 

  • Yasumoto, T., Seino, N., Murakami, Y., and Murata, M., 1987. Toxins produced by benthic dinoflagelltes. The Biological Bulletin, 172(1): 128–131, DOI: https://doi.org/10.2307/1541612.

    Article  Google Scholar 

  • Yu, Z. Q., Deng, H., Wu, K. W., Du, J., and Ma, M., 2012. Nutrient contents of dominant seagrass species and their affecting factors in Hainan Province. Journal of East China Normal University (Natural Science), (4): 131–141, DOI: https://doi.org/10.3969/j.issn.1000-5641.2012.04.016.

  • Zhu, J., Liu, B., Wang, J., Gao, Y., and Wu, Z., 2010. Study on the mechanism of allelopathic influence on cyanobacteria and chlorophytes by submerged macrophyte (Myriophyllum spicatum) and its secretion. Aquatic Toxicology, 98(2): 196–203, DOI: https://doi.org/10.1016/j.aquatox.2010.02.011.

    Article  Google Scholar 

  • Zhu, J., Xiao, H., Chen, Q., Zhao, M., Sun, D., and Duan, S., 2019. Growth inhibition of Phaeocystis globosa induced by luteolin-7-O-glucuronide from seagrass Enhalus acoroides. International Journal of Environmental Research and Public Health, 16(14): 2615, DOI: https://doi.org/10.3390/ijerph16142615.

    Article  Google Scholar 

  • Zou, J., Li, Q., Lu, S., Dong, Y., Chen, H., Zheng, C., et al., 2020. The first benthic harmful dinoflagellate bloom in China: Morphology and toxicology of Prorocentrum concavum. Marine Pollution Bulletin, 158: 111313, DOI: https://doi.org/10.1016/j.marpolbul.2020.111313.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Nos. 42076144, 41876173), and the Special Foundation for National Science and Technology Basic Research Program of China (No. 2018FY100200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songhui Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Zou, J., Xie, H. et al. Allelopathic Interactions Between the Tropical Macrophyte Enhalus acoroides and Epibenthic HAB Dinoflagellate Prorocentrum concavum. J. Ocean Univ. China 21, 1656–1668 (2022). https://doi.org/10.1007/s11802-022-5165-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-022-5165-1

Key words

Navigation