Skip to main content
Log in

Effect of Temperature on the Acoustic Reflection Characteristics of Seafloor Surface Sediments

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

Because the sound speeds of seawater and seafloor sediment both increase with temperature, the influence of temperature on the bottom reflection characteristics of seafloor sediments needs to be investigated. Based on the calculation of the temperature-controlled experimental measurement data of typical seafloor surface sediment samples, the temperature-dependent acoustic characteristics, including acoustic impedance, acoustic impedance ratio between surface sediment and seawater, and reflection coefficient, were analyzed. The effective density fluid model was used to analyze and explain the reflection coefficient variation of surface sediments with temperature and predict the dispersion characteristics. Results show that the acoustic impedance of the seabed sediment increases with temperature, whereas the acoustic impedance ratio and acoustic reflection coefficient slightly decrease. The acoustic impedance, acoustic impedance ratio, and acoustic reflection coefficient of sandy, silty, and clayey sediments vary similarly with temperature variation. Moreover, the influence of temperature on these acoustic characteristics is independent of detection frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brian, T. H., Darrell, R. J., Kevin, L. W., and Eric, I. T., 2009. Mid- to high-frequency acoustic penetration and propagation measurements in a sandy sediment. IEEE Journal of Oceanic Engineering, 34(4): 372–387, DOI: https://doi.org/10.1109/JOE.2009.2028410.

    Article  Google Scholar 

  • Buckingham, M. J., and Richardson, M. D., 2002. On tone-burst measurements of sound speed and attenuation in sandy marine sediments. IEEE Journal of Oceanic Engineering, 27(3): 429–453, DOI: https://doi.org/10.1109/JOE.2002.1040929.

    Article  Google Scholar 

  • Camin, H. J., and Isakson, M. J., 2006. A comparison of sediment reflection coefficient measurements to elastic and poroelastic models. The Journal of the Acoustical Society of America, 120(5): 2437–2449, DOI: https://doi.org/10.1121/1.2354002.

    Article  Google Scholar 

  • Carbó, R., and Molero, A. C., 2000. The effect of temperature on sound wave absorption in a sediment layer. The Journal of the Acoustical Society of America, 108(4): 1545–1547, DOI: https://doi.org/10.1121/1.1289360.

    Article  Google Scholar 

  • Carbó, R., and Molero, A. C., 2002. Temperature dependence of high frequency sound attenuation in porous marine sediments. Acta Acustica United with Acustica, 88(2): 190–194, DOI: https://doi.org/10.1134/1.1460963.

    Google Scholar 

  • Chen, B., Zhao, M., and Hu, C. Q., 2018. Analysis on spatial coherence of ambient noise and geoacoustic inversion in shallow water. Acta Acustica, 43(3): 298–306, DOI: https://doi.org/10.15949/j.cnki.0371-0025.2018.03.004 (in Chinese with English abstract).

    Google Scholar 

  • Chen, S., Yan, P., and Wang, Y. L., 2016. Inversion of the physical properties of the seabed using chirp sub-bottom data in mud volcanoes field of the Southwest of Dongsha Islands. Earth Science, 41(3): 425–432, DOI: https://doi.org/10.3799/dqkx.2016.034.

    Google Scholar 

  • Da, L. L., Cui, B. L., Guo, W. H., and Zhao, J. X., 2017. The rapid uncertainty prediction of the ocean-acoustic coupled model. Acta Acustica, 42(5): 535–542 (in Chinese with English abstract).

    Google Scholar 

  • Hou, Q. N., Wu, J. R., Shang, E. C., Ma, L., and Zhang, J. L., 2019. Amplitude parameter of bottom reflection coefficient inversion in shallow water. Acta Acustica, 44(4): 442–451, DOI: https://doi.org/10.15949/j.cnki.0371-0025.2019.04.005 (in Chinese with English abstract).

    Google Scholar 

  • Jackson, D. R., and Richardson, M. D., 2001. Seasonal temperature gradients within a sandy seafloor: Implications for acoustic propagation and scattering. In: Proceedings of Institute of Acoustics Conference. Leighton, T. G., et al., eds., Southampton, 361–368.

  • Jackson, D. R., and Richardson, M. D., 2007. High-Frequency Seafloor Acoustics. Underwater Acoustics. Springer-Verlag, New York, 100–104.

    Book  Google Scholar 

  • Kan, G. M., Liu, B. H., Wang, J. Q., Meng, X. M., Li, G. B., Hua, Q. F., et al., 2018. Sound speed dispersion characteristics of three types of shallow sediments in the southern Yellow Sea. Marine Georesources & Geotechnology, 36(7): 853–860, DOI: https://doi.org/10.1080/1064119X.2017.1392659.

    Article  Google Scholar 

  • Kan, G. M., Zou, D. P., Liu, B. H., Wang, J. Q., Meng, X. M., Li, G. B., et al., 2019. Correction for effects of temperature and pressure on sound speed in shallow seafloor sediments. Marine Georesources & Geotechnology, 37(10): 1217–1226, DOI: https://doi.org/10.1080/1064119X.2018.1545812.

    Article  Google Scholar 

  • Kim, S., Lee, G. S., Kim, D., Hahn, J., and Ryang, W. H., 2017. Variation of temperature-dependent sound velocity in unconsolidated marine sediments: Laboratory measurements. Marine Georesources & Geotechnology, 36(3): 280–287, DOI: https://doi.org/10.1080/1064119X.2016.1277442.

    Article  Google Scholar 

  • Li, F. H., Yang, X. S., Zhang, Y. J., Luo, W. Y., and Gan, W. M., 2019a. Passive ocean acoustic tomography in shallow water. The Journal of the Acoustical Society of America, 145(5): 2823–2830, DOI: https://doi.org/10.1121/1.5099350.

    Article  Google Scholar 

  • Li, M. Z., Li, Z. L., Zhou, J. X., and Zhang, R. H., 2019b. Geoacoustic inversion for acoustic parameters of sediment layer with low sound speed. Acta Physica Sinica, 68(9): 172–183, DOI: https://doi.org/10.7498/aps.68.20190183 (in Chinese with English abstract).

    Google Scholar 

  • Li, Y. M., Luo, X. H., Xu, X., Yang, X. Q., and Shi, X. B., 2010. Seafloor in-situ heat flow measurements in the deep-water area of the northern slope, South China Sea. Chinese Journal of Geophysics, 53(9): 2161–2170, DOI: https://doi.org/10.3969/j.issn.0001-5733.2010.09.016.

    Google Scholar 

  • Liu, B. S., and Lei, J. Y., 1993. Principles of Underwater Acoustics. Harbin Engineering University Press, Harbin, 76–77.

    Google Scholar 

  • Liu, Z. S., and Guan, D. H., 2004. Ocean Physics. Shangdong Education Press, Jinan, 77–78.

    Google Scholar 

  • Lu, L. C., and Ma, L., 2014. Acoustic characteristics of the seabed. Physics, 43(11): 717–722 (in Chinese with English abstract).

    Google Scholar 

  • Mi, L. J., Yuan, Y., Zhang, G. C., Hu, S. B., He, L. J., and Yang, S. C., 2009. Characteristics and genesis of geothermal field in deepwater area of the northern South China Sea. Acta Petrolei Sinica, 30(1): 27–32, DOI: https://doi.org/10.7623/syxb200901006 (in Chinese with English abstract).

    Google Scholar 

  • Rajan, S. D., and Frisk, G. V., 1992. Seasonal variations of the sediment compressional wave-speed profile in the Gulf of Mexico. The Journal of the Acoustical Society of America, 91(1): 127, DOI: https://doi.org/10.1121/1.402760.

    Article  Google Scholar 

  • Sabra, K. G., Roux, P., Thode, A. M., D’Spain, G. L., Hodgkiss, W. S., and Kuperman, W. A., 2005. Using ocean ambient noise for array self-location and self-synchronization. IEEE Journal of Oceanic Engineering, 30(2): 338–347, DOI: https://doi.org/10.1109/JOE.2005.850908.

    Article  Google Scholar 

  • Wang, J. Q., Liu, B. H., Kan, G. M., Li, G. B., Zheng, J. W., and Meng, X. M., 2018. Frequency dependence of sound speed and attenuation in fine-grained sediments from 25 to 250 kHz based on a probe method. Ocean Engineering, 160: 45–53, DOI: https://doi.org/10.1016/j.oceaneng.2018.04.078.

    Article  Google Scholar 

  • Williams, K. L., 2001. An effective density fluid model for acoustic propagation in sediments derived from Biot theory. The Journal of the Acoustical Society of America, 110(5): 2276–2281, DOI: https://doi.org/10.1121/1.1412449.

    Article  Google Scholar 

  • Yang, K. D., and Ma, Y. L., 2009. A geoacoustic inversion method based on bottom reflection signals. Acta Physica Sinica, 58(3): 1798–1805 (in Chinese with English abstract).

    Article  Google Scholar 

  • Yang, S. E., 2019. Characteristics of sound propagation in sea with 3-dimensional irregular elastic bottom. Journal of Harbin Institute of Technology, 41(2): 161–165 (in Chinese with English abstract).

    Google Scholar 

  • Yang, X. Q., Shi, X. B., Zhao, J. F., Yu, C. H., Cao, H. F., Chen, A. H., et al., 2018. Bottom water temperature measurements in the South China Sea, eastern Indian Ocean and western Pacific Ocean. Journal of Tropical Oceanography, 37(5): 86–97, DOI: https://doi.org/10.11978/2017113.

    Google Scholar 

  • Zeng, X., Yang, X. Q., Yang, J., Yu, C. H., Shi, X. B., and Qiu, X. L., 2016. Design and implementation of the low-power temperature measuring circuit for long-term heat flow observation. Journal of Ocean Technology, 35(2): 1–8, DOI: https://doi.org/10.3969/j.issn.1003-2029.2016.02.001.

    Google Scholar 

  • Zhang, P., Li, Z. L., Wu, L. X., Zhang, R. H., and Qin, J. X., 2019. Acoustic propagation characteristics of deep sea bottom reflection convergence zone. Acta Physica Sinica, 68(1): 174–185 (in Chinese with English abstract).

    Google Scholar 

  • Zhou, Q. J., Li, X. S., Liu, L. J., Liu, Y. Y., Gao, S., Zhou, H., et al., 2020. Physical properties of the seabed inversed based on Chirp data and the Biot-Stoll model in the northern continental slope of the South China Sea. Haiyang Xuebao, 42(3): 72–82, DOI: https://doi.org/10.3969/j.issn.0253-4193.2020.03.007.

    Google Scholar 

  • Zou, D. P., Lv, H. S., Liu, W., Kan, G. M., and Xiao, T. B., 2021a. Environmental factors affecting acoustic velocity of seafloor surface sediments. Acta Acustica, 46(2): 227–236 (in Chinese with English abstract).

    Google Scholar 

  • Zou, D. P., Williams, K. L., and Thorsos, E. I., 2015. Influence of temperature on acoustic sound speed and attenuation of seafloor sand sediment. IEEE Journal of Oceanic Engineering, 40(4): 969–980, DOI: https://doi.org/10.1109/JOE.2014.2365072.

    Article  Google Scholar 

  • Zou, D. P., Zeng, Z. W., Kan, G. M., Liu, W., and Xiao, T. B., 2021b. Influence of environmental conditions on the sound velocity ratio of seafloor surficial sediment. Journal of Ocean University of China, 20(3): 573–580.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the invaluable support and assistance of the members of the EHIMCE Research Group, Guangdong University of Technology, and would like to especially thank Prof. Guangming Kan from the First Institute of Oceanography of Ministry of Natural Resources for his help and advice throughout the project. This study is supported by the National Natural Science Foundation of China (No. 41776043), the Natural Science Foundation of Guangdong Province (No. 2019A1515011055), the Opening Fund of the State Key Laboratory of Acoustics, Chinese Academy of Sciences (No. SKLA202105), and the Opening Fund of Qingdao National Laboratory for Marine Science and Technology (No. MGQNLM-KF201805).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dapeng Zou or Han Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, D., Ye, G., Liu, W. et al. Effect of Temperature on the Acoustic Reflection Characteristics of Seafloor Surface Sediments. J. Ocean Univ. China 21, 62–68 (2022). https://doi.org/10.1007/s11802-022-4874-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-022-4874-9

Key words

Navigation