Skip to main content
Log in

Roles of Equatorial Ocean Currents in Sustaining the Indian Ocean Dipole Peak

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

In this study, on the basis of the results of the European Centre for Medium-Range Weather Forecasts Ocean Reanalysis System 4, the response of equatorial ocean currents and their roles during the peak phase of the Indian Ocean Dipole (IOD) are comprehensively explored. During the IOD peak season, a series of ocean responses emerge. First, significant meridional divergence in the surface layer and convergence in the subsurface layer are found in the equatorial region. The equatorial easterly winds and off-equatorial wind curl anomalies are found to be responsible for the divergence at 55°–80°E and the convergence at 70°–90°E. Second, the meridional divergence and convergence are found to favor a weakened Wyrtki jet (WJ) in the surface layer and an enhanced Equatorial Undercurrent (EUC) in the subsurface layer, respectively. Therefore, these ocean responses provide ocean positive feedback that sustains the IOD peak as the weakened WJ and enhanced EUC help maintain the zonal temperature gradient. Additionally, heat budget analyses indicate that the weakened WJ favors sea surface temperature anomaly warming in the western Indian Ocean, whereas the enhanced EUC maintains the sea surface temperature anomaly cooling in the eastern Indian Ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • An, S., and Kang, I., 2000. A further investigation of the recharge oscillator paradigm for ENSO using a simple coupled model with the zonal mean and eddy separated. Journal of Climate, 13: 1987–1993.

    Article  Google Scholar 

  • Balmaseda, M. A., Mogensen, K., and Weaver, A., 2013. Evaluation of the ECMWF ocean reanalysis ORAS4. Quarterly Journal of the Royal Meteorological Society, 139: 1132–1161, DOI: https://doi.org/10.1002/qj.2063.

    Article  Google Scholar 

  • Bjerknes, J., 1969. Atmospheric teleconnections from the equatorial Pacific. Monthly Weather Review, 97 (3): 163–172.

    Article  Google Scholar 

  • Carton, J. A., Chepurin, G. A., and Chen, L., 2018. SODA3: A new ocean climate reanalysis. Journal of Climate, 31: 6967–6983, DOI: https://doi.org/10.1175/JCLI-D-18-0149.1.

    Article  Google Scholar 

  • Chen, G., Han, W., Li, Y., Wang, D., and McPhaden, M. J., 2015. Seasonal-to-interannual time-scale dynamics of the equatorial undercurrent in the Indian Ocean. Journal of Physical Oceanography, 45: 1532–1553, DOI: https://doi.org/10.1175/JPO-D-14-0225.1.

    Article  Google Scholar 

  • Chen, G., Han, W., Shu, Y., Li, Y., Wang, D., and Xie, Q., 2016a. The role of equatorial undercurrent in sustaining the eastern Indian Ocean upwelling. Geophysical Research Letters, 43: 6444–6451, DOI: https://doi.org/10.1002/2016GL069433.

    Article  Google Scholar 

  • Chen, H., Hu, Z., Huang, B., and Sui, C., 2016b. The role of reversed equatorial zonal transport in terminating an ENSO event. Journal of Climate, 29 (16): 5859–5877, DOI: https://doi.org/10.1175/JCLI-D-16-0047.1.

    Article  Google Scholar 

  • Chen, H., Sui, C., Tseng, Y., and Huang, B., 2018. Combined role of high- and low-frequency processes of equatorial zonal transport in terminating an ENSO event. Journal of Climate, 31: 5461–5483, DOI: https://doi.org/10.1175/JCLI-D-17-0329.1.

    Article  Google Scholar 

  • Chowdary, J. S., and Gnanaseelan, C., 2007. Basin-wide warming of the Indian Ocean during El Niño and Indian Ocean Dipole years. International Journal of Climatology, 27 (11): 1421–1438.

    Article  Google Scholar 

  • de Boyer Montégut, C., Madec, G., Fischer, A. S., Lazar, A., and Iudicone, D., 2004. Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. Journal of Geophysical Research, 109: C12003.

    Article  Google Scholar 

  • Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., et al., 2011. The ERA-Interim Reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137: 553–597.

    Article  Google Scholar 

  • Delman, A. S., McClean, J. L., Sprintall, J., Talley, L. D., and Bryan, F. O., 2018. Process-specific contributions to anomalous Java mixed layer cooling during positive IOD events. Journal of Geophysical Research: Oceans, 123: 4153–4176, DOI: https://doi.org/10.1029/-2017JC013749.

    Article  Google Scholar 

  • Delman, A. S., Sprintall, J., McClean, J. L., and Talley, L. D., 2016. Anomalous Java cooling at the initiation of positive Indian Ocean Dipole events. Journal of Geophysical Research: Oceans, 121: 5805–5824.

    Article  Google Scholar 

  • Feng, M., and Meyers, G., 2003. Interannual variability in the tropical Indian Ocean: A two-year time-scale of Indian Ocean Dipole. Deep Sea Research Part II, 50: 2263–2284.

    Article  Google Scholar 

  • Gnanaseelan, C., and Deshpande, A., 2018. Equatorial Indian Ocean subsurface current variability in an Ocean General Circulation Model. Climate Dynamics, 50: 1705–1717.

    Article  Google Scholar 

  • Gnanaseelan, C., Deshpande, A., and McPhaden, M. J., 2012. Impact of Indian Ocean Dipole and El Niño/Southern Oscillation wind-forcing on the Wyrtki jets. Journal of Geophysical Research, 117: C08005, DOI: https://doi.org/10.1029/2012JC007918.

    Article  Google Scholar 

  • Huang, B., and Kinter III, J. L., 2002. Interannual variability in the tropical Indian Ocean. Journal of Geophysical Research, 107 (C11): 3199, DOI: https://doi.org/10.1029/2001JC001278.

    Article  Google Scholar 

  • Hurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E., Kushner, P. J., et al., 2013. The community earth system model: A framework for collaborative research. Bulletin of the American Meteorological Society, 94 (9): 1339–1360.

    Article  Google Scholar 

  • Iskandar, I., Masumoto, Y., and Mizuno, K., 2009. Subsurface equatorial zonal current in the eastern Indian Ocean. Journal of Geophysical Research, 114: C06005, DOI: https://doi.org/10.1029/2008JC005188.

    Article  Google Scholar 

  • Jin, F. F., 1997. An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. Journal of the Atmospheric Sciences, 54: 811–829.

    Article  Google Scholar 

  • Kang, I., and An, S., 1998. Kelvin and Rossby wave contributions to the SST oscillation of ENSO. Journal of Climate, 11: 2461–2469.

    Article  Google Scholar 

  • Karmakar, A., Parekh, A., Chowdary, J. S., and Gnanaseelan, C., 2017. Inter comparison of tropical Indian Ocean features in different ocean reanalysis products. Climate Dynamics, 51: 119–141, DOI: https://doi.org/10.1007/s00382-017-3910-8.

    Article  Google Scholar 

  • Knauss, J. A., and Taft, B. A., 1964. Equatorial undercurrent of the Indian Ocean. Science, 143 (3604): 354–356.

    Article  Google Scholar 

  • Krishnan, R., and Swapna, P., 2009. Significant influence of the boreal summer monsoon flow on the Indian Ocean response during dipole events. Journal of Climate, 22 (21): 5611–5634.

    Article  Google Scholar 

  • Li, T., Wang, B., Chang, C. P., and Zhang, Y., 2003. A theory for the Indian Ocean Dipole Mode-Zonal mode. Journal of the Atmospheric Sciences, 60: 2119–2135.

    Article  Google Scholar 

  • Madec, G., 2008. NEMO ocean engine. Institute Pierre-Simon Laplace Note du Polede Modelisation. No. 27, 1–391.

    Google Scholar 

  • McPhaden, M. J., Wang, Y., and Ravichandran, M., 2015. Volume transports of the Wyrtki jets and their relationship to the Indian Ocean Dipole. Journal of Geophysical Research: Oceans, 120: 5302–5317, DOI: https://doi.org/10.1002/2015JC010901.

    Article  Google Scholar 

  • Nagura, M., and McPhaden, M. J., 2008. The dynamics of zonal current variations in the central equatorial Indian Ocean. Geophysical Research Letters, 35 (23): 186–203, DOI: https://doi.org/10.1029/2008-GL035961.

    Article  Google Scholar 

  • Nagura, M., and McPhaden, M. J., 2010. Dynamics of zonal current variations associated with the Indian Ocean Dipole. Journal of Geophysical Research, 115: C11026, DOI: https://doi.org/10.1029/2010JC-006423.

    Article  Google Scholar 

  • Nagura, M., and McPhaden, M. J., 2016. Zonal propagation of near surface zonal currents in relation to surface wind forcing in the equatorial Indian Ocean. Journal of Physical Oceanography, 46 (12): 3623–3638.

    Article  Google Scholar 

  • Nyadjro, E. S., and McPhaden, M. J., 2014. Variability of zonal currents in the eastern equatorial Indian Ocean on seasonal to interannual time scales. Journal of Geophysical Research: Oceans, 119: 7969–7986, DOI: https://doi.org/10.1002/2014JC010380.

    Article  Google Scholar 

  • Picaut, J., Masia, F., and du Penhoat, Y., 1997. An advective-reflective conceptual model for the oscillatory nature of the ENSO. Science, 277: 663–666.

    Article  Google Scholar 

  • Rao, R. R., Horii, T., Masumoto, Y., and Mizuno, K., 2017a. Observed variability in the upper layers at the equator, 90°E in the Indian Ocean during 2001–2008, 1: Zonal currents. Climate Dynamics, 49 (3): 1077–1105.

    Article  Google Scholar 

  • Rao, R. R., Horii, T., Masumoto, Y., and Mizuno, K., 2017b. Observed variability in the upper layers at the Equator, 90°E in the Indian Ocean during 2001–2008, 2: Meridional currents. Climate Dynamics, 49 (3): 1031–1048.

    Article  Google Scholar 

  • Rao, S. A., and Behera, S. K., 2005. Subsurface influence on SST in the tropical Indian Ocean: Structure and interannual variability. Dynamics of Atmospheres and Oceans, 39 (1–2): 103–135.

    Article  Google Scholar 

  • Rao, S. A., Behera, S. K., and Masumoto, Y., 2002. Interannual subsurface variability in the tropical Indian Ocean with a special emphasis on the Indian Ocean Dipole. Deep Sea Research Part II, 49: 1549–1572.

    Article  Google Scholar 

  • Reppin, J., Schott, F. A., Fischer, J., and Quadfasel, D., 1999. Equatorial currents and transports in the upper central Indian Ocean: Annual cycle and interannual variability. Journal of Geophysical Research, 104 (C7): 15495–15514, DOI: https://doi.org/10.1029/1999JC900093.

    Article  Google Scholar 

  • Sachidanandan, C., Lengaigne, M., Muraleedharan, P. M., and Mathew, B., 2017. Interannual variability of zonal currents in the equatorial Indian Ocean: Respective control of IOD and ENSO. Ocean Dynamics, 67 (7): 857–873.

    Article  Google Scholar 

  • Saji, N. H., 2018. The Indian Ocean Dipole. Oxford Research Encyclopedia of Climate Science. Oxford University Press, Oxford, 1–34, DOI: https://doi.org/10.1093/acrefore/9780190228620.013.619.

    Google Scholar 

  • Saji, N. H., Goswami, B. N., Vinayachandran, P. N., and Yamagata, T., 1999. A dipole mode in the tropical Indian Ocean. Nature, 401 (6751): 360–363.

    Google Scholar 

  • Smith, R., Jones, P., Briegleb, B., Bryan, F., Danabasoglu, G., Dennis, J., et al., 2010. The parallel ocean program (POP) reference manual: Ocean component of the community climate systemmodel (CCSM) and community earth system model (CESM). LAUR-01853, 141: 1–140.

    Google Scholar 

  • Suarez, M. J., and Schopf, P. S., 1988. A delayed action oscillator for ENSO. Journal of the Atmospheric Sciences, 45 (21): 3283–3287.

    Article  Google Scholar 

  • Sun, S., Fang, Y., Feng, L., and Tana, 2014. Influence of the Indian Ocean Dipole on the Indian Ocean meridional heat transport. Journal of Marine Systems, 134: 81–88, DOI: https://doi.org/10.1016/j.jmarsys.2014.02.01.

    Article  Google Scholar 

  • Ummenhofer, C. C., Schwarzkopf, F. U., Meyers, G., Behrens, E., Biastoch, A., and Böning, C. W., 2013. Pacific Ocean contribution to the asymmetry in eastern Indian Ocean variability. Journal of Climate, 26: 1152–1171.

    Article  Google Scholar 

  • Uppala, S. M., KÅllberg, P. W., Simmons, A. J., Andrae, U., Da Costa Bechtold, V., Fiorino, M., et al., 2005. The ERA-40 reanalysis. Quarterly Journal of the Royal Meteorological Society, 131: 2961–3012, DOI: https://doi.org/10.1256/qj.04.176.

    Article  Google Scholar 

  • Vinayachandran, P. N., Saji, N. H., and Yamagata, T., 1999. Response of the equatorial Indian Ocean to an anomalous wind event during 1994. Geophysical Research Letters, 26 (11): 1613–1615.

    Article  Google Scholar 

  • Wang, W., Zhu, X., Wang, C., and Köhl, A., 2014. Deep meridional overturning circulation in the Indian Ocean and its relation to Indian Ocean Dipole. Journal of Climate, 27: 4508–4520.

    Article  Google Scholar 

  • Webster, P. J., Moore, A. M., Loschnigg, J. P., and Leben, R. R., 1999. Coupled ocean-atmosphere dynamics in the Indian Ocean during 1997–98. Nature, 401 (6751): 356–360.

    Article  Google Scholar 

  • Wyrtki, K., 1973. An equatorial jet in the Indian Ocean. Science, 181 (4096): 262–264.

    Article  Google Scholar 

  • Xie, S.-P., and Philander, S. G. H., 1994. A coupled ocean-atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus A: Dynamic Meteorology and Oceanography, 46 (4): 340–350.

    Article  Google Scholar 

  • Xie, S.-P., Annamalai, H., Schott, F. A., and McCreary, J. P., 2002. Structure and mechanisms of South Indian Ocean climate variability. Journal of Climate, 15 (8): 864–878.

    Article  Google Scholar 

  • Yamagata, T., Behera, S. K., Luo, J. J., Masson, S., and Jury, M. R., 2004. Coupled ocean-atmosphere variability in the tropical Indian Ocean. In: Earth Climate: The Ocean-Atmosphere Interaction. Wang, C. Z., et al., eds., Geophysical Monograph Series, AGU, Washington DC, 147: 189–212.

    Google Scholar 

  • Yu, W., Xiang, B., Liu, L., and Liu, N., 2005. Understanding the origins of interannual thermocline variations in the tropical Indian Ocean. Geophysical Research Letters, 32: L24706, DOI: https://doi.org/10.1029/2005GL024327.

    Article  Google Scholar 

  • Zhang, D., McPhaden, M. J., and Lee, T., 2014. Observed interannual variability of zonal currents in the equatorial Indian Ocean thermocline and their relation to Indian Ocean Dipole. Geophysical Research Letters, 41: 7933–7941.

    Article  Google Scholar 

  • Zhang, R., Wang, X., and Wang, C. Z., 2018. On the simulations of global oceanic latent heat flux in the CMIP5 multimodel ensemble. Journal of Climate, 31: 7111–7128, DOI: https://doi.org/10.1175/JCLI-D-17-0713.1.

    Article  Google Scholar 

Download references

Acknowledgements

The ECMWF ORAS4 reanalysis data were downloaded from http://apdrc.soest.hawaii.edu/dods/public_data/Reanalysis_Data/ORAS4. This work was supported by the National Key R&D Program of China (No. 2019YFA06067 01), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA20060502), the National Natural Science Foundation of China (Nos. 420760 20, 41776023 and 91958202), the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) (No. GML2019ZD0306), the Innovation Academy of South China Sea Ecology and Environmental Engineering of the Chinese Academy of Sciences (No. ISEE2018PY06), the Key Research Program of the Chinese Academy of Sciences (No. ZDRW-XH-2019-2), the Youth Innovation Promotion Association of the Chinese Academy of Sciences (No. 2020340), the Rising Star Foundation of the SCSIO (No. NHXX2018WL0201), and the Independent Research Project Program of the State Key Laboratory of Tropical Oceanography (No. LTOZZ2101). The authors also gratefully acknowledge the use of the HPCC for all numeric simulations and data analysis at the South China Sea Institute of Oceanology, Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiqiang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, H., Wang, W., Wang, D. et al. Roles of Equatorial Ocean Currents in Sustaining the Indian Ocean Dipole Peak. J. Ocean Univ. China 21, 622–632 (2022). https://doi.org/10.1007/s11802-022-4864-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-022-4864-y

Key words

Navigation