Skip to main content
Log in

A Spatiotemporal Interactive Processing Bias Correction Method for Operational Ocean Wave Forecasts

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

Numerical models and correct predictions are important for marine forecasting, but the forecasting results are often unable to satisfy the requirements of operational wave forecasting. Because bias between the predictions of numerical models and the actual sea state has been observed, predictions can only be released after correction by forecasters. This paper proposes a spatiotemporal interactive processing bias correction method to correct numerical prediction fields applied to the production and release of operational ocean wave forecasting products. The proposed method combines the advantages of numerical models and Forecast Discussion; specifically, it integrates subjective and objective information to achieve interactive spatiotemporal corrections for numerical prediction. The method corrects the single-time numerical prediction field in space by spatial interpolation and sub-zone numerical analyses using numerical model grid data in combination with real-time observations and the artificial judgment of forecasters to achieve numerical prediction accuracy. The difference between the original numerical prediction field and the spatial correction field is interpolated to an adjacent time series by successive correction analysis, thereby achieving highly efficient correction for multitime forecasting fields. In this paper, the significant wave height forecasts from the European Centre for Medium-Range Weather Forecasts are used as background field for forecasting correction and analysis. Results indicate that the proposed method has good application potential for the bias correction of numerical predictions under different sea states. The method takes into account spatial correlations for the numerical prediction field and the time series development of the numerical model to correct numerical predictions efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Americal Meteorlogical Society, 2002. Implementation challenges of IFPS at a forecast office with complex terrain. https://ams.confex.com/ams/annual2002/webprogram/Paper27252.html.

  • Bannister, R. N., Chipilski, H. G., and Martinez-Alvarado, O., 2020. Techniques and challenges in the assimilation of atmospheric water observations for numerical weather prediction towards convective scales. Quarterly Journal of the Royal Meteorological Society, 146 (726): 1–48.

    Article  Google Scholar 

  • Ben Alaya, M. A., Cheban, F., and Ouarda, T. B. M. J., 2015. Probabilistic multisite statistical downscaling for daily precipitation using a Bernoulli-generalized Pareto multivariate autoregressive model. Journal of Climate, 28 (6): 2349–2364.

    Article  Google Scholar 

  • Benjamin, S. O., and Seaman, N. L., 1985. A simple scheme for objective analysis in curved flow. Monthly Weather Review, 113 (7): 1184.

    Article  Google Scholar 

  • Bourgin, F., Ramos, M. H., Thirel, G., and Andreassian, V., 2014. Investigating the interactions between data assimilation and post-processing in hydrological ensemble forecasting. Journal of Hydrology, 519: 2775–2784.

    Article  Google Scholar 

  • Briggs, I. C., 2012. Machine contouring using minimum curvature. Geophysics, 39 (1): 39–48.

    Article  Google Scholar 

  • Chattopadhyay, A., Nabizadeh, E., and Hassanzadeh, P., 2020. Analog forecasting of extreme-causing weather patterns using deep learning. Journal of Advances in Modeling Earth Systems, 12 (2): e2019MS001958, https://doi.org/10.1029/2019MS001958.

    Article  Google Scholar 

  • Chen, S. H., Yang, S. C., Chen, C. Y., van Dam, C. P., Cooperman, A., Shiu, H., et al., 2019. Application of bias corrections to improve hub-height ensemble wind forecasts over the Tehachapi Wind Resource Area. Renewable Energy, 140: 281–291.

    Article  Google Scholar 

  • Chu, Y. Q., Li, C. C., Wang, Y. F., Li, J., and Li, J., 2016. A long-term wind speed ensemble forecasting system with weather adapted correction. Energies, 9 (11): 894, https://doi.org/10.3390/en9110894.

    Article  Google Scholar 

  • Cui, B., Toth, Z., Zhu, Y., and Hou, D. C., 2011. Bias correction for global ensemble forecast. Weather and Forecasting, 27 (2): 396–410.

    Article  Google Scholar 

  • Du, P. J., Wang, L. L., Guan, Q. L., Xue, J. L., Chen, X. E., Kang, X., et al., 2013. Development and applications of an interactive operational forecast system on typhoon induced wave. Periodical of Ocean University of China, 43 (10): 16–24 (in Chinese with English abstract).

    Google Scholar 

  • Duan, Q., Di, Z., Quan, J., Wang, C., Gong, W., Gan, Y., et al., 2017. Automatic model calibration: A new way to improve numerical weather forecasting. Bulletin of the American Meteorological Society, 98 (5): 959–970.

    Article  Google Scholar 

  • Durai, V. R., and Bhradwaj, R., 2014. Evaluation of statistical bias correction methods for numerical weather prediction model forecasts of maximum and minimum temperatures. Natural Hazards, 73 (3): 1229–1254.

    Article  Google Scholar 

  • Epstein, E. S., 1969. Stochastic dynamic prediction. Tellus, 21 (6): 739–759.

    Google Scholar 

  • Fei, L., 2018. Spatial interpolation algorithm research of ArcGIS engine. IHIP 2018: 2018 International Conference on Information Hiding and Image Processing. University of Salford, Manchester, 97–99.

    Chapter  Google Scholar 

  • Gao, S., Dai, K., and Xue, F., 2014. The design and development of grid edit platform based on MICAPS 3.2 system. Meteorological Monthly, 40 (9): 1152–1158 (in Chinese with English abstract).

    Google Scholar 

  • Goyal, M., Panchariya, V., Sharma, A., and Singh, V., 2018. Comparative assessment of SWAT model performance in two distinct catchments under various DEM scenarios of varying resolution, sources and resampling methods. Water Resources Management, 32 (2): 805–825.

    Article  Google Scholar 

  • Guan, H., Cui, B., and Zhu, Y. J., 2015. Improvement of statistical postprocessing using GEFS reforecast information. Weather and Forecasting, 30 (4): 841–854.

    Article  Google Scholar 

  • Hart, K. A., Streenburgh, W. J., Onton, D. J., and Siffert, A. J., 2004. An evaluation of mesoscale-model-based model output statistics (MOS) during the 2002 Olympic and Paralympic Winter Games. Weather and Forecasting, 19 (2): 200–218.

    Article  Google Scholar 

  • He, Y. N., Gao, S., Xue, F., Zhao, S. R., Liu, M., Hu, H., et al., 2018. Design and implementation of intelligent grid forecasting platform based on MICAPS4. Journal of Applied Meteorological Science, 29 (1): 13–24 (in Chinese with English abstract).

    Google Scholar 

  • Hu, S. J., Qiu, C. Y., Zhang, L. Y., Huang, Q. C., Yu, H. P., and Chou, J. F., 2014. An approach to estimating and extrapolating model error based on inverse problem methods: Towards accurate numerical weather prediction. Chinese Physics B, 23 (8): 89201.

    Article  Google Scholar 

  • Irmak, A., Ranade, P. K., Marx, D., Irmak, S., Hubbard, K. G., Meyer, G. E., et al., 2010. Spatial interpolation of climate variables in Nebraska. Transactions of the Asabe, 53 (6): 1759–1771.

    Article  Google Scholar 

  • Jin, R. H., Dai, K., Zhao, R. X., Cao, Y., Xue, F., Liu, C. H., et al., 2019. Progress and challenge of seamless fine gridded weather forecasting technology in China. Meteorological Monthly, 45 (4): 445–457 (in Chinese with English abstract).

    Google Scholar 

  • Krishnamurti, T. N., Sanjay, J., Mitra, A. K., and Vijay Kumar, T. S. V., 2004. Determination of forecast errors arising from different components of model physics and dynamics. Monthly Weather Review, 132 (11): 2570–2594.

    Article  Google Scholar 

  • Leith, C. E., 1974. Theoretical skill of Monte Carlo forecasts. Monthly Weather Review, 102 (6): 409, DOI: https://doi.org/10.1175/1520-0493(1974)102<0409:TSOMCF>2.0.CO;2.

    Article  Google Scholar 

  • Li, P. C., and Liu, X. D., 2018. Bilinear interpolation method for quantum images based on quantum Fourier transform. International Journal of Quantum Information, 16: 1850031, DOI: https://doi.org/10.1142/S0219749918500314.

    Article  Google Scholar 

  • Li, Z. X., He, Y. Q., Xin, H. J., Wang, C. F., Jia, W. X., Zhang, W., et al., 2010. Spatio-temporal variations of temperature and precipitation in Mts. Hengduan Region during 1960–2008. Acta Geographica Sinica, 65 (5): 563–579.

    Google Scholar 

  • Liu, G. L., Chen, B. Y., Wang, L. P., Zhang, S. F., Zhang, K. Y., and Lei, X., 2019. Wave height statistical characteristic analysis. Journal of Oceanology and Limnology, 37 (2): 448–460.

    Article  Google Scholar 

  • Liu, Z. H., Huang, R. G., Hu, Y. M., Fan, S. D., and Feng, P. H., 2011. Generating high spatiotemporal resolution LAI based on MODIS/GF-1 data and combined Kriging-Cressman interpolation. International Journal of Agricultural and Biological Engineering, 9 (5): 120–131.

    Google Scholar 

  • Mass, C. F., 2003. IFPS and the future of the national weather service. Weather and Forecasting, 18 (1): 75–79.

    Article  Google Scholar 

  • Mass, C. F., Ovens, D., Westrick, K., and Colle, B., 2002. Does increasing horizontal resolution produce more skillful forecasts? Bulletin of the American Meteorological Society, 83 (3): 407–430.

    Article  Google Scholar 

  • Pan, B. X., Hsu, K., AghaKouchak, A., and Sorooshian, S., 2019. Improving precipitation estimation using convolutional neural network. Water Resources Research, 55 (3): 2301–2321.

    Article  Google Scholar 

  • Rukundo, O., and Schmidt, S. E., 2018. Effects of rescaling bilinear interpolant on image interpolation quality. Optoelectronic Imaging and Multimedia Technology V, 10817: 11–12.

    Google Scholar 

  • Schulze, G. C., 2007. Atmospheric observations and numerical weather prediction. South African Journal of Science, 103: 318–323.

    Google Scholar 

  • Smith, W. H. F., and Wessel, P., 1990. Gridding with continuous curvature splines in tension. Geophysics, 55 (3): 293–305.

    Article  Google Scholar 

  • Susanto, F., de Souza, P., and He, J., 2016. Spatiotemporal interpolation for environmental modelling. Sensors, 16: 1245, https://doi.org/10.3390/s16081245.

    Article  Google Scholar 

  • Tang, B. H., and Bassill, N. P., 2018. Point downscaling of surface wind speed for forecast applications. Journal of Applied Meteorology Climatology, 57 (3): 659–674.

    Article  Google Scholar 

  • Terzopoulos, D., 1988. The computation of visible-surface representations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 10 (4): 417–438.

    Article  Google Scholar 

  • Wang, H., Liu, N., Li, B. X., and Li, X., 2014. An overview of ocean predictability and ocean ensemble forecast. Advances in Earth Science, 29 (11): 1212–1225.

    Google Scholar 

  • Wang, T. W., Gao, S., Xu, J. L., Li, Y. R., Li, P., and Ren, P., 2018. Correcting predictions from oceanic maritime numerical models via residual learning. OCEANS-MTS/IEEE Kobe Techno-Oceans. Kobe, Japan.

  • World Meteorological Organization (WMO), 2015. Seamless prediction of the earth system: From minutes to months. https://library.wmo.int/index.php?lvl=notice_display&id=17276#.XzPlq_kzaUk.

  • Wu, W., Wu, Z. M., Gao, S. H., and Zheng, Y., 2013. A homogeneous linear estimation method for system error in data assimilation. Journal of Ocean University of China, 12 (3): 335–344.

    Article  Google Scholar 

  • Yang, S. B., Xia, T. L., Zhang, Z. Q., Zheng, C. W., Li, X. F., Li, H. Y., et al., 2019a. Prediction of significant wave heights based on CS-BP model in the South China Sea. IEEE Access, 7: 147490–147500.

    Article  Google Scholar 

  • Yang, S. B., Zhang, Z. Q., Fan, L. L., Xia, T. L., Duan, S. H., Zheng, C. W., et al., 2019b. Long-term prediction of significant wave height based on SARIMA model in the South China Sea and adjacent waters. IEEE Access, 7: 88082–88092.

    Article  Google Scholar 

  • Yu, Z. C., Zhong, S. B., Wang, C. L., Yang, Y. S., Yao, G. N., and Huang, Q. Y., 2017. Mapping comparison and meteorological correlation analysis of the air quality index in mid-eastern China. ISPRS International Journal of Geo-Information, 6 (2): 52, https://doi.org/10.3390/ijgi6020052.

    Article  Google Scholar 

  • Zhang, H. L., and Pu, Z. X., 2010. Beating the uncertainties: Ensemble forecasting and ensemble-based data assimilation in modern numerical weather prediction. Advances in Meteorology, 2010: 432160, DOI: https://doi.org/10.1155/2010/432160

    Article  Google Scholar 

  • Zhang, H. R., Lu, L. J., Liu, Y. H., and Liu, W., 2015. Spatial sampling strategies for the effect of interpolation accuracy. ISPRS International Journal of Geo-Information, 4 (4): 2742–2768.

    Article  Google Scholar 

  • Zoraster, S., 2003. A surface modeling algorithm designed for speed and ease of use with all petroleum industry data. Computers & Geosciences, 29 (9): 1175–1182.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2018YFC1407 002), the National Natural Science Foundation of China (Nos. 62071279, 41930535), and the SDUST Research Fund (No. 2019TDJH103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingtian Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ai, B., Yu, M., Guo, J. et al. A Spatiotemporal Interactive Processing Bias Correction Method for Operational Ocean Wave Forecasts. J. Ocean Univ. China 21, 277–290 (2022). https://doi.org/10.1007/s11802-022-4827-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-022-4827-3

Key words

Navigation