Skip to main content
Log in

Teleseismic P-Wave Tomography of the New Guinea-Solomon Arc System

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

A P-wave tomographic traveltime inversion was applied to obtain a new model of seismic velocity anomalies beneath the New Guinea-Solomon arc system (PN-SL). The P-wave traveltime data, obtained from the revised International Seismological Center catalog, were recorded by 82 seismic stations in the PN-SL. Under the constraints of the epicenter distance, magnitude, and the number of stations recorded, 15009 effective P-wave traveltime data were selected from 2011 teleseismic events. The obtained model showed that the Solomon Sea Plate subducted beneath the New Britain Island along the New Britain Trench at an angle of >70° and that the slab can be traced down to a depth of approximately 800 km. Conversely, we cannot observe a high-velocity anomaly exhibited by the subducted Solomon Sea Plate in the deep mantle at the Trobriand Trench, and the slab stopped at a depth of <200 km. The double subduction of the Solomon Sea Plate strongly modified the subduction patterns of the early subducted Pacific and Australian plates in the mantle along the West Melanesian Trench and the Pocklington Trough, respectively. In addition, the subducted Solomon Sea Plate induced the melting of the upper mantle to form a low-velocity anomaly, which provided the deep dynamic source for the expansion of the Bismarck Sea. Based on the joint consideration of the tomography results and a petrological analysis, the low-velocity anomalies beneath the Solomon Sea and Woodlark Basin are closely related to the early subduction of the Pacific and Australian Plates, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abers, G. A., Ferris, A., Craig, M., Davies, H., Lerner-Lam, A. L., Mutter, J. C., et al., 2002. Mantle compensation of active metamorphic core complexes at Woodlark rift in Papua New Guinea. Nature, 418: 862–865.

    Article  Google Scholar 

  • Abers, G. A., and Roecker, S. W., 1991. Deep structure of an arc-continent collision: Earthquake relocation and inversion for upper mantle P and S wave velocities beneath Papua New Guinea. Journal of Geophysical Research, 96(B4): 6379–6401.

    Article  Google Scholar 

  • Anderson, M., Alvarado, P., Zandt, G., and Beck, S., 2007. Geometry and brittle deformation of the subducting Nazca Plate, Central Chile and Argentina. Geophysical Journal International, 171(1): 419–434.

    Article  Google Scholar 

  • Baldwin, S. L., Monteleone, B. D., Webb, L. E., Fitzgerald, P. G., Grove, M., and Hill, E. J., 2004. Pliocene eclogite exhumation at plate tectonic rates in eastern Papua New Guinea. Nature, 431: 263–267.

    Article  Google Scholar 

  • Baldwin, S. L., Fitzgerald, P. G., and Webb, L. E., 2012. Tectonics of the New Guinea Region. Annual Review of Earth and Planetary Sciences, 40: 495–520.

    Article  Google Scholar 

  • Barklage, M., Wiens, D. A., Conder, J. A., Pozgay, S., Shiobara, H., and Sugioka, H., 2015. P and S velocity tomography of the Mariana subduction system from a combined land-sea seismic deployment. Geochemistry, Geophysics, Geosystems, 16(3): 681–704.

    Article  Google Scholar 

  • Benes, V., Scott, S. D., and Binns, R. A., 1994. Tectonics of rift propagation into a continental margin: Western Woodlark Basin, Papua New Guinea. Journal of Geophysical Research, 99(B3): 4439–4455.

    Article  Google Scholar 

  • Binns, R. A., and Scott, S. D., 1993. Activity forming polymertallic sulfide deposits associated with felsic volcanic rocks in the eastern Manus back-arc basin, Papua New Guinea. Economic Geology, 88(8): 2226–2236.

    Article  Google Scholar 

  • Both, R., Crook, K., Taylor, B., Brogan, S., Chappell, B., Frankel, E., et al., 1986. Hydrothermal chimneys and associated fauna in the Manus back-arc basin, Papua New Guinea. Eos, Transactions American Geophysical Union, 67(21): 489–490.

    Article  Google Scholar 

  • Boutelier, D. A., and Cruden, A. R., 2008. Impact of regional mantle flow on subducting plate geometry and interplate stress: Insights from physical modelling. Geophysical Journal International, 174(2): 719–732.

    Article  Google Scholar 

  • Cameron, M. L., 2014. Rifting and subduction in the Papuan Peninsula, Papua New Guinea: The significance of the Trobriand tough, the Nubara strike-slip fault, and the Woodlark rift to the present configuration of Papua New Guinea. PhD thesis. The University of Alabama.

  • Cooper, P. A., and Taylor, B., 1985. Polarity reversal in the Solomon Islands arc. Nature, 314: 428–430.

    Article  Google Scholar 

  • Cooper, P., and Taylor, B., 1987. Seismotectonics of New Guinea: A model for arc reversal following arc-continent collision. Tectonics, 6(1): 53–67.

    Article  Google Scholar 

  • Crawford, A. J., Meffre, S., and Symonds, P. A., 2003. 120 to 0 Ma tectonic evolution of the Southwest Pacific and analogous geological evolution of the 600 to 220 Ma Tasman Fold Belt System. Geological Society of Australia Special Publication, 22: 377–397.

    Google Scholar 

  • Crook, K. A. W., 1989. Suturing history of an allochthonous terrane at a modern plate boundary traced by flysch-to-molasse facies transitions. Sedimentary Geology, 61(1–2): 49–79.

    Article  Google Scholar 

  • Crook, K. A. W., and Taylor, B., 1994. Structure and Quaternary tectonic history of the Woodlark triple junction region, Solomon Islands. Marine Geophysical Researches, 16(1): 65–89.

    Article  Google Scholar 

  • Davies, H. L., Symonds, P. A., and Ripper, I. D., 1984. Structure and evolution of the southern Solomon Sea region. Journal of Australian Geology and Geophysics, 9: 49–68.

    Google Scholar 

  • DeMets, C., Gordon, R. G., and Argus, D. F., 2010. Geologically current plate motions. Geophysical Journal International, 181(1): 1–80.

    Article  Google Scholar 

  • Engdahl, E. R., van der Hilst, R. D., and Buland, R., 1998. Global teleseismic earthquake relocation with improved travel times and procedures for depth determination. Bulletin of the Seismological Society of America, 88(3): 722–743.

    Google Scholar 

  • Faccenna, C., Heuret, A., Funiciello, F., Lallemand, S., and Becker, T. W., 2007. Predicting trench and plate motion from the dynamics of a strong slab. Earth and Planetary Science Letters, 257(1–2): 29–36.

    Article  Google Scholar 

  • Finlayson, D. M., Cull, J. P., Wiebenga, W. A., Furumoto, A. S., and Webb, J. P., 1972. New Britain-New Ireland crustal seismic refraction investigations 1967 and 1969. Geophysical Journal International, 29(3): 245–253.

    Article  Google Scholar 

  • Fitz, G., and Mann, P., 2013. Tectonic uplift mechanism of the Goodenough and Fergusson Island gneiss domes, eastern Papua New Guinea: Constraints from seismic reflection and well data. Geochemistry, Geophysics, Geosystems, 14(10): 3969–3995.

    Article  Google Scholar 

  • Gong, W., Jiang, X., Xing, J., Li, D., and Xu, C., 2019a. Subduction dynamics of the New-Guinea-Solomon arc system: Constraints from the subduction initiation of the plate. Marine Geology & Quaternary Geology, 39(9): 115–129 (in Chinese with English abstract).

    Google Scholar 

  • Gong, W., Jiang, X., Xing, J., Xu, C., and Xu, X., 2019b. Heterogeneous strain regime at the west of the Ogasawara Plateau in the western Pacific Ocean from inversion of earthquake focal mechanisms. Journal of Asian Earth Sciences, 180: 103868, DOI: https://doi.org/10.1016/j.jseaes.2019.103868.

    Article  Google Scholar 

  • Hall, R., and Spakman, W., 2002. Subducted slabs beneath the eastern Indonesia-Tonga region: Insights from tomography. Earth and Planetary Science Letters, 201(2): 321–336.

    Article  Google Scholar 

  • Hall, R., and Spakman, W., 2003. Mantle structure and tectonic evolution of the region north and east of Australia 22. Geological Society of Australia Special Publication 22 and Geological Society of America Special Paper, 372: 361–381.

    Google Scholar 

  • Hanyu, T., Tejada, M. L. G., Shimizu, K., Ishizuka, O., Fujii, T., Kimura, J., et al., 2017. Collision-induced post-plateau volcanism: Evidence from a seamount on Ontong Java Plateau. Lithos, 294–295: 87–96.

    Article  Google Scholar 

  • Holm, R. J., and Richards, S. W., 2013. A re-evaluation of arc-continent collision and along-arc variation in the Bismarck Sea region, Papua New Guinea. Australian Journal of Earth Sciences, 60(5): 605–619.

    Article  Google Scholar 

  • Holm, R. J., Rosenbaum, G., and Richards, S. W., 2016. Post 8 Ma reconstruction of Papua New Guinea and Solomon Islands: Microplate tectonics in a convergent plate boundary setting. Earth-Science Reviews, 156: 66–81.

    Article  Google Scholar 

  • Holm, R. J., Spandler, C., and Richards, S. W., 2015. Continental collision, orogenesis and arc magmatism of the Miocene Maramuni arc, Papua New Guinea. Gondwana Research, 28(3): 1117–1136.

    Article  Google Scholar 

  • Honza, E., Davies, H. L., Keene, J. B., and Tiffin, D. L., 1987. Plate boundaries and evolution of the Solomon Sea region. Geo-Marine Letters, 7(3): 161–168.

    Article  Google Scholar 

  • Honza, E., Miyazaki, T., and Lock, J., 1989. Subduction erosion and accretion in the Solomon Sea region. Tectonophysics, 160(1–4): 49–62.

    Article  Google Scholar 

  • Hu, J., Liu, L., Hermosillo, A., and Zhou, Q., 2016. Simulation of late Cenozoic South American flat-slab subduction using geodynamic models with data assimilation. Earth and Planetary Science Letters, 438: 1–13.

    Article  Google Scholar 

  • Inoue, H., Coffin, M. F., Nakamura, Y., Mochizuki, K., and Kroenke, L. W., 2008. Intrabasement reflections of the Ontong Java Plateau: Implications for plateau construction. Geochemistry, Geophysics, Geosystems, 9(4): Q04014, DOI: https://doi.org/10.1029/2007GC001780.

    Article  Google Scholar 

  • Jaxybulatov, K., Koulakov, I., and Dobretsov, N. L., 2013. Segmentation of the Izu-Bonin and Mariana slabs based on the analysis of the Benioff seismicity distribution and regional tomography results. Solid Earth, 4(1): 59–73.

    Article  Google Scholar 

  • Joshima, M., Okuda, Y., Murakami, F., Kishimoto, K., and Honza, E., 1987. Age of the Solomon Sea Basin from magnetic lineations. Co-Marine Letters, 6: 229–234.

    Article  Google Scholar 

  • Julian, B. R., and Gubbins, D., 1977. Three-dimensional seismic ray tracing. Journal of Geophysics, 43(1): 95–113.

    Google Scholar 

  • Kennett, B. L. N., and Engdahl, E. R., 1991. Traveltimes for global earthquake location and phase identification. Geophysical Journal International, 105(2): 429–465.

    Article  Google Scholar 

  • Li, S., Suo, Y., Liu, B., Liu, Y., Li, X., Zhao, S., et al., 2018. Microplate tectonics theory: Insights from microblocks in the global oceans and continental margins. Earth Science Frontiers, 25(5): 324–355 (in Chinese with English abstract).

    Google Scholar 

  • Little, T. A., Baldwin, S. L., Fitzgerald, P. G., and Monteleone, B., 2007. Continental rifting and metamorphic core complex formation ahead of the Woodlark spreading ridge, D’Entrecasteaux Islands, Papua New Guinea. Tectonics, 26(1): TC1002, DOI: https://doi.org/10.1029/2005TC001911.

    Article  Google Scholar 

  • Lock, J., Davies, H. L., Tiffin, D. L., Murakami, F., and Kisimoto, K., 1987. The Trobriand subduction system in the western Solomon Sea. Co-Marine Letters, 7: 129–134.

    Article  Google Scholar 

  • Ma, Y., Zeng, Z. G., Chen, S., Yin, X., and Wang, X., 2017. Origin of the volcanic rocks erupted in the eastern Manus Basin: Basaltic andesite-andesite-dacite associations. Journal of Ocean University of China, 16(3): 389–402.

    Article  Google Scholar 

  • Mahoney, J. J., Storey, M., Duncan, R. A., Spencer, K. J., and Pringle, M., 1993. Geochemistry and age of the Ontong Java Plateau. In: The Mesozoic Pacific: Geology, Tectonics, and Volcanism. Pringle, M. S., et al., eds., Wiley, Washington D. C., 233–262.

    Chapter  Google Scholar 

  • Mann, P., and Taira, A., 2004. Global tectonic significance of the Solomon Islands and Ontong Java Plateau convergent zone. Tectonophysics, 389(3–4): 137–190.

    Article  Google Scholar 

  • Miura, S., Suyehiro, K., Shinohara, M., Takahashi, N., Araki, E., and Taira, A., 2004. Seismological structure and implications of collision between the Ontong Java Plateau and Solomon Island arc from ocean bottom seismometer-airgun data. Tectonophysics, 389(3–4): 191–220.

    Article  Google Scholar 

  • Müller, R. D., Sdrolias, M., Gaina, C., and Roest, W. R., 2008. Age, spreading rates, and spreading asymmetry of the world’s ocean crust. Geochemistry, Geophysics, Geosystems, 9(4): Q04006.

    Article  Google Scholar 

  • Paige, C. C., and Saunders, M. A., 1982. LSQR: An algorithm for sparse linear equations and sparse least squares. ACM Transactions on Mathematical Software, 8: 43–71.

    Article  Google Scholar 

  • Pegler, G., Das, S., and Woodhouse, J. H., 1995. A seismological study of the eastern New Guinea and the western Solomon Sea regions and its tectonic implications. Geophysical Journal International, 122(3): 961–981.

    Article  Google Scholar 

  • Petterson, M. G., Neal, C. R., Mahoney, J. J., Kroenke, L. W., Saunders, A. D., Babbs, T. L., et al., 1997. Structure and deformation of north and central Malaita, Solomon Islands: Tectonic implications for the Ontong Java Plateau-Solomon arc collision, and for the fate of oceanic plateaus. Tectonophysics, 283(1–4): 1–33.

    Article  Google Scholar 

  • Rawlinson, N., Reading, A. M., and Kennett, B. L. N., 2006. Lithospheric structure of Tasmania from a novel form of teleseismic tomography. Journal of Geophysical Research, 111(B2): B02301, DOI: https://doi.org/10.1029/2005JB003803.

    Article  Google Scholar 

  • Richardson, W. P., Okal, E. A., and Van der Lee, S., 2000. Rayleigh-wave tomography of the Ontong-Java Plateau. Physics of the Earth and Planetary Interiors, 118(1–2): 29–51.

    Article  Google Scholar 

  • Schellart, W. P., Lister, G. S., and Toy, V. G., 2006. A late Cretaceous and Cenozoic reconstruction of the Southwest Pacific region: Tectonics controlled by subduction and slab rollback processes. Earth-Science Reviews, 76(3–4): 191–233.

    Article  Google Scholar 

  • Schellart, W. P., and Spakman, W., 2015. Australian plate motion and topography linked to fossil New Guinea slab below Lake Eyre. Earth and Planetary Science Letters, 421: 107–116.

    Article  Google Scholar 

  • Schellart, W. P., Stegman, D. R., Farrington, R. J., and Moresi, L., 2011. Influence of lateral slab edge distance on plate velocity, trench velocity, and subduction partitioning. Journal of Geophysical Research, 116(B10): B10408, DOI: https://doi.org/10.1029/2011JB008535.

    Article  Google Scholar 

  • Silver, E. A., Abbott, L. D., Kirchoff-Stein, K. S., Reed, D. L., and Bernstein-Taylor, B., 1991. Collision propagation in Papua New Guinea and the Solomon Sea. Tectonics, 10(5): 863–874.

    Article  Google Scholar 

  • Taylor, B., 1979. Bismarck Sea—Evolution of a back-arc basin. Geology, 7(4): 171–174.

    Article  Google Scholar 

  • Taylor, B., 2006. The single largest oceanic plateau: Ontong Java-Manihiki-Hikurangi. Earth and Planetary Science Letters, 241(3–4): 372–380.

    Article  Google Scholar 

  • Taylor, B., Goodliffe, A. M., and Martinez, F., 1999. How continents break up: Insights from Papua New Guinea. Journal of Geophysical Research, 104(B4): 7497–7512.

    Article  Google Scholar 

  • Taylor, B., Goodliffe, A., Martinez, F., and Hey, R., 1995. Continental rifting and initial sea-floor spreading in the Woodlark Basin. Nature, 374: 534–537.

    Article  Google Scholar 

  • Tregoning, P., Lambeck, K., Stolz, A., Morgan, P., McClusky, S. C., van ber Beek, P., et al., 1998. Estimation of current plate motions in Papua New Guinea from global positioning system observation. Journal of Geophysical Research, 103(B6): 12181–12203.

    Article  Google Scholar 

  • Wallace, L. M., Ellis, S., Little, T., Tregoning, P., Palmer, N., Rosa, R., et al., 2014. Continental breakup and UHP rock exhumation in action: GPS results from the Woodlark Rift, Papua New Guinea. Geochemistry, Geophysics, Geosystems, 15(11): 4267–4290.

    Article  Google Scholar 

  • Wallace, L. M., Stevens, C., Silver, E., McCaffrey, R., Loratung, W., Hasiata, S., et al., 2004. GPS and seismological constraints on active tectonics and arc-continent collision in Papua New Guinea: Implications for mechanics of microplate rotations in a plate boundary zone. Journal of Geophysical Research: Solid Earth, 109(B5): B05404.

    Article  Google Scholar 

  • Webb, L., Baldwin, S. L., and Fitzgerald, P. G., 2014. The early-middle Miocene subduction complex of the Louisiade Archipelago, southern margin of the Woodlark Rift. Geochemistry, Geophysics, Geosystems, 15(10): 4024–4046.

    Article  Google Scholar 

  • Weissel, J. K., Taylor, B., and Karner, G. D., 1982. The opening of the Woodlark Basin, subducting of the Woodlark spreading system, and the evolution of northern Melanesia since mid-Pliocene time. Tectonophysics, 87(1–4): 253–277.

    Article  Google Scholar 

  • Whitmore, G. P., Johnson, D. P., Crook, K. A. W., Galewsky, J., and Silver, E. A., 1997. Convergent margin extension associated with arc-continent collision: The Finsch Deep, Papua New Guinea. Tectonics, 16(1): 77–87.

    Article  Google Scholar 

  • Woodhead, J., Hergt, J., Sandiford, M., and Johnson, W., 2010. The big crunch: Physical and chemical expressions of arc/continent collision in the western Bismarck arc. Journal of Volcanology and Geothermal Research, 190(1–2): 11–24.

    Article  Google Scholar 

  • Wu, J., Suppe, J., Lu, R., and Kanda, R., 2016. Philippine Sea and East Asian Plate tectonics since 52Ma constrained by new subducted slab reconstruction methods. Journal of Geophysical Research: Solid Earth, 121(6): 4670–4741.

    Article  Google Scholar 

  • Yoneshima, S., Mochizuki, K., Araki, E., Hino, R., Shinohara, M., and Suyehiro, K., 2005. Subduction of the Woodlark Basin at New Britain Trench, Solomon Islands region. Tectonophysics, 397(3–4): 225–239.

    Article  Google Scholar 

  • Zelt, B. C., Taylor, B., and Goodliffe, A. M., 2001. 3-D crustal velocity structure at the rift tip in the western Woodlark Basin. Geophysical Research Letters, 28(15): 3015–3018.

    Article  Google Scholar 

  • Zhang, F. X., Wu, Q. J., and Ding, Z. F., 2018. A P-wave velocity study beneath the eastern region of Tibetan Plateau and its implication for plateau growth. Chinese Science Bulletin, 63(19): 1949–1961 (in Chinese with English abstract).

    Article  Google Scholar 

  • Zhang, F. X., Wu, Q. J., and Li, Y. H., 2014. A traveltime tomography study by teleseismic S wave data in the Northeast China area. Chinese Journal of Geophysics, 57(1): 88–101 (in Chinese with English abstract).

    Google Scholar 

  • Zhang, J., Luo, Y., and Chen, J., 2020. Oceanic Plateau formation implied by Ontong Java Plateau, Kerguelen Plateau and Shatsky Rise. Journal of Ocean University of China, 19(2): 351–360.

    Article  Google Scholar 

  • Zhao, D., Hasegawa, A., and Kanamori, H., 1994. Deep structure of Japan subduction zone as derived from local, regional, and teleseismic events. Journal of Geophysical Research, 99(B11): 22313–22329.

    Article  Google Scholar 

  • Zhao, D., Yamamoto, Y., and Yanada, T., 2013. Global mantle heterogeneity and its influence on teleseismic regional tomography. Gondwana Research, 23(2): 595–616.

    Article  Google Scholar 

  • Zhao, H., Zeng, Z., Yin, X., and Chen, S., 2014. Silicon and oxygen isotopic composition of igneous rocks from the eastern Manus Basin. Journal of Ocean University of China, 13(3): 421–427.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Wessel & Smith (https://www.soest.hawaii.edu/gmt/) for the free use of GMT software, which was used to produce most of the figures used in the study. We are grateful for the algorithmic support of the traveltime tomography study from Dr. Fengxue Zhang at the Institute of Geophysics, China Earthquake Administration. This work was supported by the National Natural Science Foundation of China (Nos. 91858215 and 41906048), the Fundamental Research Funds for the Central Universities (No. 201964015), and Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology (No. MMRZZ201801).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Gong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, B., Zhang, H., Gong, W. et al. Teleseismic P-Wave Tomography of the New Guinea-Solomon Arc System. J. Ocean Univ. China 21, 694–706 (2022). https://doi.org/10.1007/s11802-022-4626-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-022-4626-x

Key words

Navigation