Skip to main content
Log in

Paleosalinity and Its Association with Organic Matter: A Case Study from the Eocene Shahejie Formation, Laizhou Bay Sag, Bohai Bay Basin (China)

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

Paleosalinity is vital for the paleoenvironmental reconstruction and affects the formation of source rock. The lower-middle sections of the third member of Eocene Shahejie formation (Es3M-L) constitute the most important source rock layer in Laizhou Bay Sag. However, the paleosalinity of the depositional water in which Es3M-L submembers are deposited remains unclear. A series of integrated experiments, including major and trace elements, X-ray diffraction, total organic carbon, and Rock-Eval, was performed to reveal the paleosalinity and its relationship with organic matter (OM). Various inorganic proxies (Sr/Ba, Rb/K, B/Ga, Walker’s paleosalimeter, Adam’s paleosalimeter, and Couch’s paleosalimeter) were employed to determine the paleosalinity of samples. Prominent differences existed in the proxies. Couch’s paleosalimeter is the most reliable and qualitative approach for Laizhou Bay Sag. Samples from the lake center (depocenter) and margin showed paleosalinities from 4.92 wt‰ to 9.73 wt‰, suggesting a ubiquitous brackish (oligohaline-mesohaline) water body in the paleolake. Molybdenum enrichment in samples indicates an oxygen-depleted (suboxic or anoxic) condition. The increase in salinity has a certain but non-significant positive correlation with oxygen reduction. This condition may be attributed to the weak stratification of the water column in brackish water bodies. Moreover, paleosalinity has a weak and indirect relationship with OM accumulation during the deposition of Es3M-L submembers in Laizhou Bay Sag.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, T. D., Haynes, J. R., and Waker, C. T., 1963. Boron in Holocene illites of the Dovey Estuary, Wales, and its relationship to palaeosalinity in cyclothems. Sedimentology, 4: 189–195.

    Article  Google Scholar 

  • Algeo, T. J., and Lyons, T. W., 2006. Mo-total organic carbon covariation in modern anoxic marine environments: Implications for analysis of paleoredox and paleohydrographic conditions. Paleoceanography, 21: 1–23.

    Article  Google Scholar 

  • Algeo, T. J., and Tribovillard, N., 2009. Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation. Chemical Geology, 268: 211–225, DOI: https://doi.org/10.1016/j.chemgeo.2009.09.001.

    Article  Google Scholar 

  • Allen, M. B., Macdonald, D. I. M., Zhao, X., Vincent, S. J., and Brouet-Menzies, C., 1997. Early Cenozoic two-phase extension and late Cenozoic thermal subsidence and inversion of the Bohai Basin, northern China. Marine and Petroleum Geology, 14: 951–972, DOI: https://doi.org/10.1016/S0264-8172(97)00027-5.

    Article  Google Scholar 

  • Bodnar, R. J., 1993. Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochimica et Cosmochimica Acta, 57: 683–684.

    Article  Google Scholar 

  • Boehrer, B., and Schultze, M., 2008. Stratification of lakes. Reviews of Geophysics, 46: 1–27.

    Article  Google Scholar 

  • Chen, Z., Li, M., Cao, T., Ma, X., Li, Z., Jiang, Q., et al., 2017. Hydrocarbon generation kinetics of a heterogeneous source rock system: Example from the lacsutrine Eocene-Oligocene Shahejie formation, Bohai Bay Basin, China. Energy & Fuels, 31: 13291–13304, DOI: https://doi.org/10.1021/acs.energyfuels.7b02361.

    Article  Google Scholar 

  • Couch, E. L., 1971. Calculation of paleosalinities from boron and clay mineral data. AAPG Bulletin, 55: 1829–1837.

    Google Scholar 

  • Curry, B., Henne, P. D., Joanes, M. F., Marrone, F., Pieri, V., La Mantia, T., et al., 2016. Holocene paleoclimate inferred from salinity histories of adjacent lakes in southwestern Sicily (Italy). Quaternary Science Reviews, 150: 67–83, DOI: https://doi.org/10.1016/j.quascirev.2016.08.013.

    Article  Google Scholar 

  • Curtis, C. D., 1964. Studies on the use of boron as a paleoenvironmental indicator. Geochimica et Cosmochimica Acta, 28: 1125–1137, DOI: https://doi.org/10.1016/0016-7037(64)90064-X.

    Article  Google Scholar 

  • Degens, E. T., Williams, E. G., and Keith, M. L., 1957. Environmental studies of carboniferous sediments Part I: Geochemical criteria for differentiating marine from fresh-water shales. AAPG Bulletin, 41: 2427–2455.

    Google Scholar 

  • Deng, Y., Liu, C., Wang, J., and Zhang, D., 2016. The activity and post-reformation of Cenozoic Tan-Lu Fault in Laizhou Bay area. Acta Petrologica Sinica, 32: 1197–1205.

    Google Scholar 

  • Diao, F., Jin, F., Hao, F., Sun, Y., Zou, H., Wang, Y., et al., 2014. Palaeolake environment and organic matter enrichment mechanism of Paleogene Shahejie formation in Langgu Sag. Petroleum Geology & Experiment, 36: 479–486.

    Google Scholar 

  • Dodd, J. R., and Crisp, E. L., 1982. Non-linear variation with salinity of Sr/Ca and Mg/Ca ratios in water and aragonitic bivalve shells and implications for paleosalinity studies. Palaeogeography, Palaeoclimatology, Palaeoecology, 38: 45–56, DOI: https://doi.org/10.1016/0031-0182(82)90063-3.

    Article  Google Scholar 

  • Doyle, D. A., Cabral, J. M., Pfuetzner, R. A., Kuo, A., Gulbis, J. M., Steven, L. C., et al., 1998. The structure of the potassium channel: Molecular basis of K+ conduction and selectivity. Science, 280: 69–77.

    Article  Google Scholar 

  • Frederickson, A. F., and Reynolds Jr., R. C., 1960. Geochemical method for determining paleosalinity. In: The 8th National Conference on Clays and Clay Minerals. Oxford, 203–213.

  • Fu, J., Li, S., Xu, L., and Niu, X., 2018. Paleo-sedimentary environmental restoration and its significance of Chang 7 member of Triassic Yanchang formation in Ordos Basin, NW China. Petroleum Exploration and Development, 45: 998–1008, DOI: https://doi.org/10.1016/S1876-3804(18)30104-6.

    Article  Google Scholar 

  • Guo, J., Zeng, J., Song, G., Zhang, Y., Wang, X., and Meng, W., 2014. Characteristics and origin of carbonate cements of Shahejie formation of central uplift belt in Dongying Depresssion. Earth Science — Journal of China University of Geosciences, 39: 565–576.

    Google Scholar 

  • Hao, F., Zhou, X., Zhu, Y., and Yang, Y., 2009. Mechanisms for oil depletion and enrichment on the Shijiutuo Uplift, Bohai Bay Basin, China. AAPG Bulletin, 93: 1015–1037, DOI: https://doi.org/10.1306/04140908156.

    Article  Google Scholar 

  • He, J., Ding, W., Jiang, Z., Jiu, K., Li, A., and Sun, Y., 2017. Mineralogical and chemical distribution of the Es3L oil shale in the Jiyang Depression, Bohai Bay Basin (E China): Implications for paleoenvironmental reconstruction and organic matter accumulation. Marine and Petroleum Geology, 81: 196–219, DOI: https://doi.org/10.1016/j.marpetgeo.2017.01.007.

    Article  Google Scholar 

  • Huang, Y., Guan, D., Zhao, G., Zhu, Y., and Ren, Y., 2018. Geological characteristics of tight oil in the Shahejie formation in northeast subsag of Laizhou Bay Sag and its formation condition. Petroleum Geology and Recovery Efficiency, 25: 21–29.

    Google Scholar 

  • Jiang, Q., Ma, Y., Shen, Y., Guo, R., Gao, X., Liu, B., et al., 2019. High-frequency redox variations of the Eocene cyclic lacustrine sediments in the Yingxi area, western Qaidam Basin, China. Journal of Asian Earth Sciences, 174: 135–151, DOI: https://doi.org/10.1016/j.jseaes.2018.11.025.

    Article  Google Scholar 

  • Jiang, Y. L., Fang, L., Liu, J. D., Hu, H. J., and Xu, T. W., 2016. Hydrocarbon charge history of the Paleogene reservoir in the northern Dongpu Depression, Bohai Bay Basin, China. Petroleum Science, 13: 625–641, DOI: https://doi.org/10.1007/s12182-016-0130-5.

    Article  Google Scholar 

  • Jin, Q., and Zhu, G., 2006. Progress in research of deposition of oil source rocks in saline lakes and their hydrocarbon generation. Geological Journal of China Universities, 12: 483–492.

    Google Scholar 

  • Keith, M. L., and Weber, J. N., 1964. Carbon and oxygen isotopic composition of selected limestones and fossils. Geochimica et Cosmochimica Acta, 28: 1787–1816, DOI: https://doi.org/10.1016/0016-7037(64)90022-5.

    Article  Google Scholar 

  • Li, C., and Xiao, J., 1988. The application of trace element to the study on paleosalinities in Shahejie formation of Dongying Basin Shengli Oilfield. Acta Sedimentologica Sinica, 6: 100–107.

    Google Scholar 

  • Li, J., and Chen, D., 2003. Summary of quantified research method on paleosalinity. Petroleum Geology and Recovery Efficiency, 10: 1–4.

    Google Scholar 

  • Li, S., Wang, M., Zheng, D., and Zhao, X., 2003. Recovery of climate of Palaeogene in Jiyang Depression of Shandong. Journal of Shandong University of Science and Technology (Natural Science), 22: 6–9.

    Google Scholar 

  • Liang, H., Xu, F., Grice, K., Xu, G., Holman, A., Hopper, P., et al., 2019a. Kinetics of oil generation from brackish-lacustrine source rocks in the southern Bohai Sea, East China. Organic Geochemistry, 139: 103945, DOI: https://doi.org/10.1016/j.orggeochem.2019.103945.

    Article  Google Scholar 

  • Liang, H., Xu, F., Xu, G., Yuan, H., Huang, S., Wang, Y., et al., 2019b. Geochemical characteristics and origins of the diagenetic fluids of the Permian Changxing formation calcites in the southeastern Sichuan Basin: Evidence from petrography, inclusions and Sr, C and O isotopes. Marine and Petroleum Geology, 103: 564–580, DOI: https://doi.org/10.1016/j.marpetgeo.2019.02.015.

    Article  Google Scholar 

  • Liang, H., Xu, G., Xu, F., Yu, Q., Liang, J., and Wang, D., 2020. Paleoenvironmental evolution and organic matter accumulation in an oxygen-enriched lacustrine basin: A case study from the Laizhou Bay Sag, southern Bohai Sea (China). International Journal of Coal Geology, 217: 103318.

    Article  Google Scholar 

  • Liu, Y., and Liu, P., 2017. Quantitative controls in water environment to distribution of sediments in saline lacustrine basin: A case of Es4 in Bonan sag. Journal of Central South University (Science and Technology), 48: 239–246, DOI: https://doi.org/10.11817/j.issn.1672-7207.2017.01.032.

    Google Scholar 

  • Moldowan, J. M., Seifert, W. K., and Gallegos, E. J., 1985. Relationship between petroleum composition and depositional environment of petroleum source rocks. AAPG Bulletin, 69: 1255–1268.

    Google Scholar 

  • Murphy, A. E., Sageman, B. B., Hollander, D. J., and Lyons, T. W., 2000. Black shale deposition and faunal overturn in the Devonian Appalachian Basin: Clastic starvation, seasonal water-column mixing, and efficient biolimiting nutrient recycling. Paleoceanography, 15: 280–291, DOI: https://doi.org/10.1029/1999PA000445.

    Article  Google Scholar 

  • Niu, C., 2012. Tectonic evolution and hydrocarbon accumulation of Laizhouwan Depression in southern Bohai Sea. Oil and Gas Geology, 33: 424–431.

    Google Scholar 

  • Peters, K. E., 1986. Guidelines for evaluating petroleum source rock using programmed pyrolysis guidelines for evaluating petroleum source rock using programmed Pyrolysis. AAPG Bulletin, 70: 318–329, DOI: https://doi.org/10.1306/94885688-1704-11D7-8645000102C1865D.

    Google Scholar 

  • Poulain, C., Gillikin, D. P., Thébault, J., Munaron, J. M., Bohn, M., Robert, R., et al., 2015. An evaluation of Mg/Ca, Sr/Ca, and Ba/Ca ratios as environmental proxies in aragonite bivalve shells. Chemical Geology, 396: 42–50, DOI: https://doi.org/10.1016/j.chemgeo.2014.12.019.

    Article  Google Scholar 

  • Sampei, Y., Matsumoto, E., and Dettman, D. L., 2005. Paleosalinity in a brackish lake during the Holocene based on stable oxygen and carbon isotopes of shell carbonate in Nakaumi Lagoon, southwest Japan. Palaeogeography, Palaeoclimatology, Palaeoecology, 224: 352–366, DOI: https://doi.org/10.1016/j.palaeo.2005.04.020.

    Article  Google Scholar 

  • Sun, H., Peng, W., and Zhou, X., 2009. Mechanics of salt tectonics in Laizhouwan Sag, off shore Bohai Bay Basin. Geotectonica et Metaiiogenia, 33: 352–358.

    Google Scholar 

  • Taylor, S. R., and McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell, London, 1–312.

    Google Scholar 

  • Tian, J., and Zhang, X., 2015. Sedimentary Geochemistry. Geology Press, Beijing, 1–202.

    Google Scholar 

  • Tissot, B. P., and Welte, D. H., 1984. Petroleum Formation and Occurrence. Springer-Verlag Berlin Heidelberg GmbH, New York, 679pp.

    Book  Google Scholar 

  • Tribovillard, N., Algeo, T. J., Lyons, T., and Riboulleau, A., 2006. Trace metals as paleoredox and paleoproductivity proxies: An update. Chemical Geology, 232: 12–32, DOI: https://doi.org/10.1016/j.chemgeo.2006.02.012.

    Article  Google Scholar 

  • Tribovillard, N., Bout-roumazeilles, V., Algeo, T., Lyons, T. W., Sionneau, T., Montero-serrano, J. C., et al., 2008. Paleodepositional conditions in the Orca Basin as inferred from organic matter and trace metal contents. Marine Geology, 254: 62–72, DOI: https://doi.org/10.1016/j.margeo.2008.04.016.

    Article  Google Scholar 

  • Tulipani, S., Grice, K., Greenwood, P. F., Haines, P. W., Sauer, P. E., Schimmelmann, A., et al., 2015. Changes of palaeoenvironmental conditions recorded in late Devonian reef systems from the Canning Basin, western Australia: A biomarker and stable isotope approach. Gondwana Research, 28: 1500–1515, DOI: https://doi.org/10.1016/j.gr.2014.10.003.

    Article  Google Scholar 

  • VeniceSystem, 1958. Symposium on the classification of brackish waters. Archives for Oceanography and Limnology, 11: 1–248.

    Google Scholar 

  • Vosoughi Moradi, A., Sari, A., and Akkaya, P., 2016. Geochemistry of the Miocene oil shale (Hançili formation) in the Çankiri-Çorum Basin, central Turkey: Implications for paleo-climate conditions, source-area weathering, provenance and tectonic setting. Sedimentary Geology, 341: 289–303, https://doi.org/10.1016/j.sedgeo.2016.05.002.

    Article  Google Scholar 

  • Walker, C. T., 1962. Separation techniques in sedimentary geochemistry illustrated by studies of boron. Nature, 194: 1073–1074, DOI: https://doi.org/10.1038/1941073a0.

    Article  Google Scholar 

  • Walker, C. T., and Price, N. B., 1963. Departure curves for computing paleosalinity from boron in illites and shales. AAPG Bulletin, 47: 833–841.

    Google Scholar 

  • Wang, F., and Guo, S., 2019. Influential factors and model of shale pore evolution: A case study of a continental shale from the Ordos Basin. Marine and Petroleum Geology, 102: 271–282, DOI: https://doi.org/10.1016/j.marpetgeo.2018.12.045.

    Article  Google Scholar 

  • Wang, G., Niu, C., Wang, L., and Ye, X., 2012. Enlightenments of exploration breakthrough in Laizhouwan Depression. Journal of Oil and Gas Technology, 34: 39–44.

    Google Scholar 

  • Wang, L., Zhou, X., Niu, C., and Yang, B., 2011. The effect of structure evolution on hydrocarbon accumulation in Laizhouwan Depression, Bohai Bay. Chinese Journal of Geology, 46: 838–846.

    Google Scholar 

  • Wang, Q., Huang, X., Zhou, X., Liu, R., and Li, X., 2018a. The recovery of protoype basin and its control over the deposition in the Lower third sub-member and fourth member of the Shahejie formation in the south slope zone of the Laizhouwan Sag. Journal of Geomechanic, 24: 371–380.

    Google Scholar 

  • Wang, Q., Zou, H., Hao, F., Zhu, Y., Zhou, X., Wang, Y., et al., 2014. Modeling hydrocarbon generation from the Paleogene source rocks in Liaodong Bay, Bohai Sea: A study on gas potential of oil-prone source rocks. Organic Geochemistry, 76: 204–219, DOI: https://doi.org/10.1016/j.orggeochem.2014.08.007.

    Article  Google Scholar 

  • Wang, T., Hao, A., Chen, Q., Li, C., Wang, Q., Lu, H., et al., 2018b. The study of main factors controlling the development of Wufeng formation and Longmaxi formation organic-rich shales in the Yichang area, middle Yangtze region. Natural Gas Exploration and Development, 29: 616–631.

    Google Scholar 

  • Wei, W., Algeo, T. J., Lu, Y., Lu, Y. C., Liu, H., Zhang, S., et al., 2018. Identifying marine incursions into the Paleogene Bohai Bay Basin lake system in northeastern China. International Journal of Coal Geology, 200: 1–17, DOI: https://doi.org/10.1016/j.coal.2018.10.001.

    Article  Google Scholar 

  • Xie, G., Shen, Y., Liu, S., and Hao, W., 2018. Trace and rare earth element (REE) characteristics of mudstones from Eocene Pinghu formation and Oligocene Huagang formation in Xihu Sag, East China Sea Basin: Implications for provenance, depositional conditions and paleoclimate. Marine and Petroleum Geology, 92: 20–36, DOI: https://doi.org/10.1016/j.marpetgeo.2018.02.019.

    Article  Google Scholar 

  • Xin, Y., Ren, J., and Li, J., 2013. Control of tectonic-paleogeomorphology on deposition: A case from the Shahejie formation Sha 3 member, Laizhouwan Sag, southern Bohai Sea. Petroleum Exploration and Development, 40: 325–332, DOI: https://doi.org/10.1016/S1876-3804(13)60039-7.

    Article  Google Scholar 

  • Xu, D., Chi, G., Zhang, Y., Zhang, Z., and Sun, W., 2017. Yanshanian (late Mesozoic) ore deposits in China—An introduction to the special issue. Ore Geology Reviews, 88: 481–490, https://doi.org/10.1016/j.oregeorev.2017.04.022.

    Article  Google Scholar 

  • Xu, F., Liang, J., Xu, G., Yuan, H., and Liu, Y., 2018. Genetic mechanisms and distribution characteristics of overpressures in the Paleogene reservoirs of the Bohai Bay Basin, East China. Energy Exploration and Exploitation, 36: 388–413, DOI: https://doi.org/10.1177/0144598717739394.

    Article  Google Scholar 

  • Xu, G., Hannah, J. L., Bingen, B., Georgiev, S., and Stein, H. J., 2012. Digestion methods for trace element measurements in shales: Paleoredox proxies examined. Chemical Geology, 324–325: 132–147, DOI: https://doi.org/10.1016/j.chemgeo.2012.01.029.

    Article  Google Scholar 

  • Yan, M., Chi, Q., Gu, T., and Wang, C., 1997. Chemical compositions of continental crust and rocks in eastern China. Geophysical & Geochemical Exploration, 21: 451–459.

    Google Scholar 

  • Yang, B., Niu, C., Sun, H., Wang, L., and Wang, G., 2011. The significance of discovering Kenli 10–1 oilfield in 108 ton-reserves grade in Laizhouwan Sag. China Offshore Oil and Gas, 23: 148–153.

    Google Scholar 

  • Yang, R., Fan, A., Tom, A. J. V. L., Han, Z., and Zavala, C., 2018. The influence of hyperpycnal flows on the salinity of deep-marine environments, and implications for the interpretation of marine facies. Marine and Petroleum Geology, 98: 1–11, DOI: https://doi.org/10.1016/j.marpetgeo.2018.08.005.

    Article  Google Scholar 

  • Ye, C., Yang, Y., Fang, X., and Zhang, W., 2016. Late Eocene clay boron-derived paleosalinity in the Qaidam Basin and its implications for regional tectonics and climate. Sedimentary Geology, 346: 49–59, DOI: https://doi.org/10.1016/j.sedgeo.2016.10.006.

    Article  Google Scholar 

  • Ye, H., Shedlock, K. M., Hellinger, S. J., and Sclater, J. G., 1985. The North China Basin: An example of a Cenozoic rifted intraplate basin. Tectonics, 4: 153–169.

    Article  Google Scholar 

  • Yu, Y., Zhou, X., Tang, L., Peng, W., Lu, D., and Li, W., 2009. Salt structures in the Laizhouwan Depression, offshore Bohai Bay Basin, eastern China: New insights from 3D seismic data. Marine and Petroleum Geology, 26: 1600–1607, DOI: https://doi.org/10.1016/j.marpetgeo.2009.01.007.

    Article  Google Scholar 

  • Zhang, L., Liu, Q., Zhu, R., Li, Z., and Lu, X., 2009. Source rocks in Mesozoic-Cenozoic continental rift basins, East China: A case from Dongying Depression, Bohai Bay Basin. Organic Geochemistry, 40: 229–242, DOI: https://doi.org/10.1016/j.orggeochem.2008.10.013.

    Article  Google Scholar 

  • Zhang, S., Li, B., He, Z., and Zhang, C., 2016. The imbalance property of ancient salinity in Bohaiwan Basin during Es3-Es4 in the Paleogene. Acta Sedimentologica Sinica, 34: 397–403.

    Google Scholar 

  • Zhang, X., 1987. Study of boron as a paleoenvironmented indicator. Oceanologia et Limnologia Sinica, 18: 583–589.

    Google Scholar 

  • Zhang, X., Lin, C., Zahid, M. A., Jia, X., and Zhang, T., 2017a. Paleosalinity and water body type of Eocene Pinghu formation, Xihu Depression, East China Sea Basin. Journal of Petroleum Science and Engineering, 158: 469–478, DOI: https://doi.org/10.1016/j.petrol.2017.08.074.

    Article  Google Scholar 

  • Zhang, X., Wu, Z., Zhou, X., Niu, C., Li, W., Ren, J., et al., 2017b. Cenozoic tectonic characteristics and evolution of the southern Bohai Sea. Geotectonica et Metallogenia, 41: 50–60, DOI: https://doi.org/10.16539/j.ddgzyckx.2017.01.004.

    Google Scholar 

  • Zhu, G., Qiang, J., Dai, J., Zhang, S., Zhang, L., and Li, J., 2004. Investigation on the salt lake source rocks for middle Shasi column of Dongying Depression. Geological Journal of China Universities, 10: 257–266.

    Google Scholar 

  • Zhuang, X., Zou, H., Yang, Y., and Sun, H., 2010. Development mechanism of lacustrine source rocks in Yellow River. Science & Technology Review, 28: 48–54.

    Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the National Science and Technology Major Projects (No. 2016ZX0 5024-002-007) and the CNOOC Project (No. CCL2020TJ X0NST1271).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haoran Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, H., Xu, G., Yu, Q. et al. Paleosalinity and Its Association with Organic Matter: A Case Study from the Eocene Shahejie Formation, Laizhou Bay Sag, Bohai Bay Basin (China). J. Ocean Univ. China 20, 741–754 (2021). https://doi.org/10.1007/s11802-021-4562-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-021-4562-1

Key words

Navigation