Skip to main content
Log in

Effect of Methane Gas on Acoustic Characteristics of Hydrate-Bearing Sediment-Model Analysis and Experimental Verification

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

Gas leakage is an important consideration in natural systems that experience gas hydrate accumulation. A number of velocity models have been created to study hydrate-bearing sediments, including the BGTL theory, the weighted equation, the Wood equation, the K-T equation, and the effective medium theory. In previous work, we regarded water as the pore fluid, which meant its density and bulk modulus values were those of water. This approach ignores the presence of gas, which results in a biased calculation of the pore fluid’s bulk modulus and density. To take into account the effect of gas on the elastic wave velocity, it is necessary to recalculate the bulk modulus and density of an equivalent medium. Thus, a high-pressure reactor device for simulating leakage systems was developed to establish the relationship between wave velocity and hydrate saturation in methane-flux mode. A comparison of the values calculated by the velocity model with the experimental data obtained in this study indicates that the effective medium theory (EMT, which considers gas effects) is more applicable than other models. For hydrate saturations of 10%–30%, the result ranges between EMT-B (homogenous gas distribution) and EMT-B (patchy gas distribution). For hydrate saturations of 30%–60%, the results are similar to those of the EMT-B (homogenous gas distribution) mode, whereas hydrate saturations of 60%–70% yield results similar to those of the EMT-A mode. For hydrate saturations greater than 80%, the experimental results are similar to those of the EMT-B mode. These results have significance for hydrate exploitation in the South China Sea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, A. L., and Hampton, L. D., 1980. Acoustics of gas-bearing sediments. II. Measurements and models. The Journal of the Acoustical Society of America, 67(6): 1890.

    Article  Google Scholar 

  • Borowski, W. S., Paull, C. K., and Ussler III, W., 1996. Marine pore water sulfate profiles indicated in situ methane flux from underlying gas hydrate. Geology, 24: 655–658.

    Article  Google Scholar 

  • Bu, Q. T., Hu, G. W., Liu, C. L., Xing, T. J., Li, C. F., and Meng, Q. G., 2019. Acoustic characteristics and micro-distribution prediction during hydrate dissociation in sediments from the South China Sea. Journal of Natural Gas Science & Engineering, 65: 135–144.

    Article  Google Scholar 

  • Bu, Q. T., Hu, G. W., Ye, Y. G., Liu, C. L., Li, C. F., Best, A. I., and Wang, J. S., 2017. The elastic wave velocity response of methane gas hydrate formation in vertical gas migration systems. Journal of Geophysics & Engineering, 14(3): 555–569.

    Article  Google Scholar 

  • Bunz, S., and Mienert, J., 2004. Acoustic imaging of gas hydrate and free gas at the Storegga Slide. Journal of Geophysical Research Solid Earth, 109(B4): 380–389.

    Google Scholar 

  • Cai, J. C., Xia, Y. X., Lu, C., Bian, H., and Zou, S. M., 2020a. Creeping microstructure and fractal permeability model of natural gas hydrate reservoir. Marine and Petroleum Geology, 115: 104282.

    Article  Google Scholar 

  • Cai, J. C., Xia, Y. X., Xu, S., and Tian, H. T., 2020b. Advances in multiphase seepage characteristics of natural gas hydrate sediments. Chinese Journal of Theoretical and Applied Mechanics, 52(1): 208–223.

    Google Scholar 

  • Careione, J. M., and Gei, D., 2004. Gas-hydrate concentration estimated from P- and S-wave veloeities at the Mallik 2L-38 research well, Maekenzie Delta, Canada. Journal of Applied Geophysics, 56(1): 73–78.

    Article  Google Scholar 

  • Chong, Z. R., Yang, S. H. B., Babu, P., Linga, P., and Li, X. S., 2015. Review of natural gas hydrates as an energy resource: Prospects and challenges. Appllied Energy, 162: 1633–1652.

    Article  Google Scholar 

  • Chuang, P. C., Yang, T. F., Hong, W. L., Lin, S., Sun, C. H., Lin, A. T. S., Chen, J. C., Wang, Y., and Chung, S. H., 2010. Estimation of methane flux offshore SW Taiwan and the influence of tectonics on gas hydrate accumulation. Geofluids, 10: 497–510.

    Article  Google Scholar 

  • Crutchley, G. J., Fraser, D. R. A., Pecher, I. A., Gorman, A. R., Maslen, G., and Henrys, S. A., 2015. Gas migration into gas hydrate-bearing sediments on the southern Hikurangi margin of New Zealand. Journal of Geophysical Research Solid Earth, 120(2): 725–743.

    Article  Google Scholar 

  • Davis, J. L., and Chudobiak, W. J., 1975. In situ meter for measuring relative permittivity of soils. Geological Survey of Canada, 75(1): 75–79.

    Google Scholar 

  • Dickens, G. R., 2001. Sulfate profiles and barium fronts in sediment on the Blake Ridge: Present and past methane fluxes through a large gas hydrate reservoir. Geochimica et Cosmochimica Acta, 65: 529–543.

    Article  Google Scholar 

  • Dvorkin, J., and Nur, A., 1998. Acoustic signatures of patchy saturation. International Journal of Solids & Structures, 35(34): 4803–4810.

    Article  Google Scholar 

  • Dvorkin, J., Prasad, M., Sakai, A., and Lavoie, D., 1999. Elasticity of marine sediments: Rock physics modeling. Geophysical Research Letters, 26(2): 1781–1784.

    Article  Google Scholar 

  • Eaton, M., Mahajan, D., and Flood, R., 2007. A novel high-pressure apparatus to study hydrate-sediment interactions. Journal of Petroleum Science and Engineering, 56(1–3): 101–107.

    Article  Google Scholar 

  • Fang, Y. X., and Chu, F. Y., 2008. The relationship of sulfate-methane interface, the methane flux and the underlying gas hydrate. Marine Science Bulletin, 10(1): 28–37.

    Google Scholar 

  • Fu, S. S., Wilkens, R. H., and Frazer, L. N., 1996. In situ velocity profiles in gassy sediments: Kiel Bay. Geo-Marine Letters, 16(3): 249–253.

    Article  Google Scholar 

  • Greene, C. A., and Wilson, P. S., 2012. Laboratory investigation of a passive acoustic method for measurement of underwater gas seep ebullition. Journal of the Acoustical Society of America, 131(1): 61–66.

    Article  Google Scholar 

  • Guan, J. A., Li, D. L., Zhou, H. X., Liang, D. Q., and Wan, L. H., 2012. An experimental system for simulating the formation and decomposition of leaky natural gas hydrates. Natural Gas Industry, 32(5): 1–4 (in Chinese with English abstract).

    Google Scholar 

  • Guan, J. A., Liang, D. Q., Wu, N. Y., and Fan, S. S., 2009. The methane hydrate formation and the resource estimate resulting from free gas migration in seeping seafloor hydrate stability zone. Journal of Asian Earth Sciences, 36(4–5): 277–288.

    Article  Google Scholar 

  • He, L., Matsubayashi, O., and Lei, X., 2006. Methane hydrate accumulation model for the central nankai accretionary prism. Marine Geology, 227(3–4): 201–214.

    Article  Google Scholar 

  • Helgerud, M. B., Dvorkin, J., Nur, A., Sakai, A., and Collett, T., 1999. Elastic-wave velocity in marine sediments with gas hydrate: Effective medium modeling. Geophysical Research Letters, 26(13): 2021–2024.

    Article  Google Scholar 

  • Holbrook, W. S., Gorman, A. R., Hombaeh, M., Hackwith, K. L., Nealon, J., Lizarralde, D., and Pecher, I. A., 2002. Seismic deteetion of marine methane hydrate. The Leading Edge, 21(7): 686–689.

    Article  Google Scholar 

  • Holbrook, W. S., Hoskins, H., Wood, W. T., Stephen, R. A., and Lizarralde, D., 2006. Methane hydrate and free gas on the Blake Ridge from vertical seismic profiling. Seience, 273(5283): 1840–1843.

    Article  Google Scholar 

  • Hu, G. W., 2010. Experimental study on acoustic response of gas hydrates to sediments from South China Sea. PhD thesis. China University of Geosciences.

  • Hu, G. W., Ye, Y. G., Zhang, J., Diao, S. B., and Liu, C. L., 2012. Acoustic properties of hydrate-bearing unconsolidated sediments measured by the bender element technique. Chinese Journal of Geophysics, 55(6): 635–647.

    Article  Google Scholar 

  • Hu, G. W., Ye, Y. G., Zhang, J., Diao, S. B., Liu, C. L., Wang, H. X., and Wang, J. S., 2008. Study on gas hydrate formation-dissociation and its acoustic responses in unconsolidated sands. Geoscience, 22(3): 465–474 (in Chinese with English abstract).

    Google Scholar 

  • Hu, G. W., Ye, Y. G., Zhang, J., Liu, C. L., and Li, Q., 2014. Acoustic response of gas hydrate formation in sediments from South China Sea. Marine and Petroleum Geology, 52: 1–8.

    Article  Google Scholar 

  • Hu, G. W., Ye, Y. G., Zhang, J., Liu, C. L., Diao, S. B., and Wang, J. S., 2010. Acoustic properties of gas hydrate-bearing consolidated sediments and experimental testing of elastic velocity models. Journal of Geophysical Research, 115: B02102.

    Article  Google Scholar 

  • Jakobsen, M., Hudson, J. A., Minshull, T. A., and Singh, S. C., 2000. Elastic properties of hydrate-bearing sediments using effective medium theory. Journal of Geophysical Research Atmospheres, 105(B1): 561–577.

    Article  Google Scholar 

  • Kuster, G. T., and Toksoz, M. N., 1974. Velocity and attenuation of seismic waves in two-phase media; Part II, Experimental results. Geophysics, 39(5): 607.

    Article  Google Scholar 

  • Kwon, T. H., and Cho, G. C., 2009. Evolution of compressional wave velocity during CO2 hydrate formation in sediments. Energy & Fuels, 23(11): 5731–5736.

    Article  Google Scholar 

  • Lee, M. W., 2002. Modified biot-gassmann theory for calculating elastic velocities for unconsolidated and consolidated sediments. Marine Geophysical Research, 23(5): 403–412.

    Article  Google Scholar 

  • Lee, M. W., Hutchinson, D. R., Collett, T. S., and Dillon, W. P., 1996. Seismic velocities for hydrate-bearing sediments using weighted equation. Journal of Geophysical Research Atmospheres, 101(9): 20347–20358.

    Article  Google Scholar 

  • Li, H. X., and Tao, C. H., 2009. Features analysis of seismic wave field in two-phase anisotropic random medium with the pseudo-spectral method. Acta Physica Sinica, 58(4): 2836–2842 (in Chinese with English abstract).

    Article  Google Scholar 

  • Li, H. X., Tao, C. H., Liu, C., Deng, X. M., Zhou, J. P., Zhang, J. H., Gu, C. H., and He, Y. H., 2007a. Study on sound speed picking-up technique by geoacoustically measuring in-situ marine sediment. Advances in Marine Science, 25(4): 474–479 (in Chinese with English abstract).

    Google Scholar 

  • Li, H. X., Tao, C. H., Liu, C., Deng, X. M., Zhou, J. P., Zhang, J. H., Gu, C. H., and He, Y. H., 2007b. Study on signal denoising of multi-frequency seabed in situ sediment acoustic measurement. Journal of Jilin University (Earth Science Edition), 37(5): 196–199 (in Chinese with English abstract).

    Google Scholar 

  • Li, H. X., Tao, C. H., Liu, F. L., and Zhou, J. P., 2015. Effect of gas bubble on acoustic characteristic of sediment: Taking sediment from East China Sea for example. Acta Physica Sinica, 64(10): 436–441 (in Chinese with English abstract).

    Google Scholar 

  • Li, H. X., Tao, C. H., Zhou, J. P., Deng, J. Z., Deng, X. M., and Fang, G. X., 2009. Modified effective medium modeling and seismic wave field in un-cemented marine sediments with hydrates. Acta Physica Sinica, 58(11): 8083–8093 (in Chinese with English abstract).

    Article  Google Scholar 

  • Li, Q., Cheng, Y., Zhang, H., Yan, C., and Liu, Y., 2018. Simulating the effect of hydrate dissociation on wellhead stability during oil and gas development in deepwater. Journal of Ocean University of China, 17(1): 35–45.

    Article  Google Scholar 

  • Liang, J., Wang, M. J., Lu, J. A., Liang, J. Q., Wang, H. B., and Kuang, Z. G., 2013. Characteristcs of sonic and seismic velocities of gas hydrate bearing sediments in the Shenhu area, northern South China Sea. Natural Gas Industry, 33(7): 29–35 (in Chinese with English abstract).

    Google Scholar 

  • Liang, J., Wang, M. J., Lu, J. A., Wang, H. B., Liang, J. Q., and Su, P. B., 2010. Logging response characteristics of gas hydrate formation in Shenhu area of the South China Sea. Geoscience, 24(3): 506–514 (in Chinese with English abstract).

    Google Scholar 

  • Liang, J., Wang, M. J., Wang, H. B., Lu, J. A., and Liang, J. Q., 2009. Relationship between the sonic logging velocity and saturation of gas hydrate in Shenhu area, northern slope of South China Sea. Geoscience, 23(2): 217–223 (in Chinese with English abstract).

    Google Scholar 

  • Liu, B., Pan, H., Wang, X., Li, F. G., Sun, C. Y., and Chen, G. J., 2013a. Evaluation of different CH4-CO2 replacement processes in hydrate-bearing sediments by measuring P-wave velocity. Energies, 6(12): 6242–6254.

    Article  Google Scholar 

  • Liu, C. L., Ye, Y. G., Sun, S. C., Chen, Q., Meng, Q. G., and Hu, G. W., 2013b. Experimental studies on the P-T stability conditions and influencing factors of gas hydrate in different systems. Science China Earth Sciences, 56(4): 594–600.

    Article  Google Scholar 

  • Liu, T., and Liu, X. W., 2018. Identifying the morphologies of gas hydrate distribution using P-wave velocity and density: A test from the GMGS2 expedition in the South China Sea. Journal of Geophysics & Engineering, 15(3): 1008–1022.

    Article  Google Scholar 

  • Løseth, H., Gading, M., and Wensaas, L., 2009. Hydrocarbon leakage interpreted on seismic data. Marine and Petroleum Geology, 26(7): 1304–1319.

    Article  Google Scholar 

  • Michael, D. M., 2000. Natural Gas Hydrate in Oceanic and Permafrost Environments. Springer, New York, 1–415.

    Google Scholar 

  • Milkov, A. V., and Sassen, R., 2003. Preliminary assessment of resources and economic potential of individual gas hydrate accumulatiom in the Gulf of Mexico continental slope. Marine and Petroleum Geology, 20: 111–128.

    Article  Google Scholar 

  • Pearson, C. F., Halleck, P. M., Mcguire, P. L., Hermes, R., and Mathews, M., 1982. Natural gas hydrate deposits: A review of in situ properties. The Journal of Physical Chemistry, 87(21): 4180–4185.

    Article  Google Scholar 

  • Priest, J. A., Best, A., and Clayton, C., 2005. A laboratory investigation into the seismic velocities of methane gas hydrate-bearing sand. Journal of Geophysical Research, 110: B04102.

    Article  Google Scholar 

  • Priest, J. A., Rees, E. V. L., and Clayton, C. R. I., 2009. Influence of gas hydrate morphology on the seismic velocities of sands. Journal of Geophysical Research, 114: B11205.

    Article  Google Scholar 

  • Ren, S. R., Liu, Y. J., Liu, Y. X., and Zhang, W. D., 2010. Acoustic velocity and electrical resistance of hydrate bearing sediments. Journal of Petroleum Science and Engineering, 70(1): 52–56.

    Article  Google Scholar 

  • Ruppel, C., and Kinoshita, M., 2000. Fluid, methane, and energy flux in an active margin gas hydrate province, offshore Costa Rica. Earth and Planet Science Letters, 179(1): 153–165.

    Article  Google Scholar 

  • Sassen, R., Losh, S. L., Cathles III, L. M., Roberts, H. H., Whelan, J. K., Milkov, A. V., Sweet, S. T., and Defreitas, D. A., 2001. Massive vein-filling gas hydrate: Relation to ongoing gas migration from the deep subsurface in the Gulf of Mexico. Marine and Petroleum Geology, 18(5): 551–560.

    Article  Google Scholar 

  • Stoll, R. D., 1974. Effeets of gas hydrate in sediments. In: KaPlan I. Natural Gases in Marine Sediment. First edition. Springer, New York, 235–248.

    Chapter  Google Scholar 

  • Su, Z., and Chen, D. F., 2006. Types of gas hydrates and their characteristics in marine environments. Geotectonica et Metallogenia, 30(2): 256–264 (in Chinese with English abstract).

    Google Scholar 

  • Tao, C. H., Deng, X. M., Li, H. X., Zhou, J. P., Jin, X. B., Fu, S. S., Wlkens, R. H., Gu, C. H., and He, Y. H., 2009. Development of in-situ marine sediment geo-acoustic measurement system with real-time and multi frequencies (the second generation). China Ocean Engineering, 23(4): 769–778 (in Chinese with English abstract).

    Google Scholar 

  • Toki, T., Gamo, T., and Yamanaka, T., 2001. Methane migration from the Nankai Trough accretionary prism. Bulletin Geological Survey of Japan, 52: 1–8.

    Google Scholar 

  • Topp, G. C., Davis, J. L., and Annan, A. P., 1980. Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. Water Resources Research, 16(3): 574–582.

    Article  Google Scholar 

  • Tueholke, B. E., Bryan, G. M., and Ewing, J. I., 1977. Gas hydrate horizons deteeted in seismic-profile data from the western North Atlantic. AAPG Bulletin, 61: 698–707.

    Google Scholar 

  • Wang, Y. B., Fan, S. S., Guan, J. A., Liang, D. Q., and Feng, Z. P., 2007. Experimental simulation of oceanic leakage hydrate formation. Natural Gas Geoscience, 18(4): 596–601 (in Chinese with English abstract).

    Google Scholar 

  • Wilkens, R. H., and Richardson, M. D., 1998. The influence of gas bubbles on sediment acoustic properties: In situ, laboratory, and theoretical results from Eckernforde Bay, Baltic Sea. Continental Shelf Research, 18(14): 1859–1892.

    Article  Google Scholar 

  • Winters, W. J., Waite, W. F., Mason, D. H., Gilbert, L. Y., and Pecher, I. A., 2007. Methane gas hydrate effect of sediment acoustic and strength properties. Journal of Petroleum Science and Engineering, 56(1): 127–135.

    Article  Google Scholar 

  • Wood, A. B., 1941. A Text Book of Sound. Macmillan, New York, 1–578.

    Google Scholar 

  • Wright, J. F., Nixon, F. M., Dallimore, S. R., and Matsubayashi, O., 2002. A method for direct measurement of gas hydrate amounts based on the bulk dielectric properties of laboratory test media. The Proceedings of the 4th International Conference on Gas Hydrates. Yokohama, 745–749.

  • Wu, D. D., Wu, N. Y., Zhang, M., Guan, H. X., Fu, S. Y., and Yang, R., 2013. Relationship of sulfate-methane interface (SMI), methane flux and the underlying gas hydrate in Dongsha area, northern South China Sea. Earth Science, 38(6): 1309–1320.

    Google Scholar 

  • Wyllie, M. R. J., Gregory, A. R., and Gardner, G. H. F., 1958. An experimental investigation of factors affecting elastic wave velocities in porous media. Geophysics, 23(3): 459–493.

    Article  Google Scholar 

  • Xing, L., Liu, X. Q., Zhang, J., Liu, H. S., Zhang, J., Li, Z. Z., and Wang, J. H., 2018. Sensitivity analysis of P-waves and S-waves to gas hydrate in the Shenhu area using OBS. Journal of Ocean University of China, 17(1): 139–146.

    Article  Google Scholar 

  • Yang, T., Jiang, S., Ge, L., Yang, J. H., Wu, N. Y., Zhang, G. X., and Liu, J., 2010. Geochemical characteristics of pore water in shallow sediments from Shenhu area of South China Sea and their significance for gas hydrate occurrence. Chinese Science Bulletin, 55(8): 752–760.

    Article  Google Scholar 

  • Zhou, H. X., Guan, J. A., Li, D. L., and Liang, D. Q., 2012. Experimental study of leakage-type methane hydrate formation. Marine Geology Frontiers, 28(4): 62–66 (in Chinese with English abstract).

    Google Scholar 

  • Zillmer, M., 2006. A method for determining gas-hydrate or free-gas saturation of porous media from seismic measurements. Geophysics, 71(3): 21.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported financially by the National Key R&D Program of China (No. 2017YFC0307600), the Qingdao National Laboratory for Marine Science and Technology (No. QNLM2016ORP0207), the National Natural Science Foundation of China (No. 41906067), the China Postdoctoral Science Foundation (No. 2018M632634), the Natural Science Foundation of Shandong Province of China (No. ZR2019BD051), and the Marine Geological Survey Program (Nos. DD20190221 and DD20190231). We are grateful to other colleagues for helpful discussions and inputs at the Key Laboratory of Gas Hydrate, Ministry of Land and Resources. We are sincerely grateful to the anonymous referees for their great constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaowei Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bu, Q., Hu, G., Liu, C. et al. Effect of Methane Gas on Acoustic Characteristics of Hydrate-Bearing Sediment-Model Analysis and Experimental Verification. J. Ocean Univ. China 20, 75–86 (2021). https://doi.org/10.1007/s11802-021-4354-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-021-4354-7

Key words

Navigation