Skip to main content
Log in

Protist Interactions and Seasonal Dynamics in the Coast of Yantai, Northern Yellow Sea of China as Revealed by Metabarcoding

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

Facilitated by the high-throughput sequencing (HTS) technique, the importance of protists to aquatic systems has been widely acknowledged in the last decade. However, information of protistan biotic interactions and seasonal dynamics is much less known in the coast ecosystem with intensive anthropic disturbance. In this study, year-round changes of protist community composition and diversity in the coastal water of Yantai, a city along the northern Yellow Sea in China, were investigated using HTS for the V4 region of 18S rDNA. The interactions among protist groups were also analyzed using the co-occurrence network. Data analyses showed that Alveolata, Chlorophyta, and Stramenopiles are the most dominant phytoplanktonic protists in the investigated coastal area. The community composition displayed strong seasonal variation. The abundant families Dino-Group-I-Clade-1 and Ulotri-chales_X had higher proportions in spring and summer, while Bathycoccaceae exhibited higher ratios in autumn and winter. Alpha diversities (Shannon and Simpson) were the highest in autumn and the lowest in spring (ANOVA test, P < 0.05). Nutrients (SiO42−, PO43−), total organic carbon (TOC), and pH seemed to drive the variation of alpha diversity, while temperature, PO43− and TON were the most significant factors influencing the whole protist community. Co-variance network analyses reveal frequent co-occurrence events among ciliates, chlorophytes and dinoflagellate, suggesting biotic interactions have been induced by predation, parasitism and mixotrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bachvaroff, T. R., Kim, S., Guillou, L., Delwiche, C. F., and Coats, D. W., 2012. Molecular diversity of the syndinean genus Euduboscquella based on single-cell PCR analysis. Applied and Environmental Microbiology, 78: 334–345.

    Google Scholar 

  • Balzano, S., Abs, E. C., and Leterme, S., 2015. Protist diversity along a salinity gradient in a coastal lagoon. Aquatic Microbial Ecology, 74: 263–277.

    Google Scholar 

  • Benjamini, Y., Krieger, A. M., and Yekutieli, D., 2006. Adaptive linear step-up procedures that control the false discovery rate. Biometrika, 93: 491–507.

    Google Scholar 

  • Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., and Fierer, N., 2010. QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7: 335–336.

    Google Scholar 

  • Caron, D. A., Alexander, H., Allen, A. E., Archibald, J. M., Armbrust, E. V., Bachy, C., and Heidelberg, K. B., 2017. Probing the evolution, ecology and physiology of marine protists using transcriptomics. Nature Reviews Microbiology, 15(1): 6.

    Google Scholar 

  • Christaki, U., Genitsaris, S., Monchy, S., Li, L. L., Rachik, S., and Breton, E., 2017. Parasitic eukaryotes in a meso-eutrophic coastal system with marked Phaeocystis globosa blooms. Frontiers in Mainer Science, 4: 416.

    Google Scholar 

  • Clarke, K. R., and Gorley, R. N., 2006. PRIMER v6: User Manual/Tutorial. Version 6.0. Plymouth Marine Laboratory, Plymouth, UK, 93pp.

    Google Scholar 

  • Coats, D. W., and Heisler, J. J., 1989. Spatial and temporal occurrence of the parasitic dinoflagellate Duboscquella cachoni and its tintinnine host Eutintinnus pectinis in Chesapeake Bay. Marine Biology, 101(3): 401–409.

    Google Scholar 

  • Coats, D. W., Kim, S., Bachvaroff, T. R., Handy, S., and Delwiche, C. F., 2010. Tintinnophagus acutus n. gen., n. sp. (Phylum Dinoflagellata), an ectoparasite of the ciliate Tintinnopsis cylindrica Daday 1887, and its relationship to Duboscquodinium collini Grassé 1952. Journal of Eukaryotic Microbiology, 57: 468–482.

    Google Scholar 

  • De la Vega, M., Diaz, E., Vila, M., and León, R., 2011. Isolation of a new strain of Picochlorum sp. and characterization of its potential biotechnological applications. Biotechnology Progress, 27(6): 1535–1543.

    Google Scholar 

  • De Vargas, C., Audic, S., Henry, N., Decelle, J., Mahé, F., Logares, R., and Carmichael, M., 2015. Eukaryotic plankton diversity in the sunlit ocean. Science, 348(6237): 1261605.

    Google Scholar 

  • Falkowski, P. G., and Raven, J. A., 2007. Aquatic Photosynthesis. Princeton University Press, Princeton, 484pp.

    Google Scholar 

  • Feizi, S., Marbach, D., Médard, M., and Kellis, M., 2013. Network deconvolution as a general method to distinguish direct dependencies in networks. Nature Biotechnology, 31: 726–733.

    Google Scholar 

  • Figueroa, R. I., Garcés, E., and Camp, J., 2010. Reproductive plasticity and local adaptation in the host-parasite system formed by the toxic Alexandrium minutum and the dinoflagellate parasite Parvilucifera sinerae. Harmful Algae, 10(1): 56–63.

    Google Scholar 

  • Georges, C., Monchy, S., Genitsaris, S., and Christaki, U., 2014. Protist community composition during early phytoplankton blooms in the naturally iron-fertilized Kerguelen area (Southern Ocean). Biogeosciences, 11: 5847–5863.

    Google Scholar 

  • Gong, J., Shi, F., Ma, B., Dong, J., Pachiadaki P., and Zhang, X. L., 2015. Depth shapes α- and β-diversities of microbial eukaryotes in surficial sediments of coastal ecosystems. Environmental Microbiology, 17(10): 3722–3737.

    Google Scholar 

  • Gran-Stadniczeñko, S., Egge, E., Hostyeva, V., Logares, R., Wenche, E., and Edvardsen, B., 2018. Protist diversity and seasonal dynamics in Skagerrak plankton communities as revealed by metabarcoding and microscopy. Journal of Eukaryotic Microbiology, 66: 494–513, DOI: https://doi.org/10.1111/jeu.12700.

    Google Scholar 

  • Guillou, L., Bachar, D., Audic, S., Bass, D., Berney, C., Bittner, L., and Del Campo, J., 2012. The Protist Ribosomal Reference database (PR2): A catalog of unicellular eukaryote small subunit rRNA sequences with curated taxonomy. Nucleic Acids Research, 41(D1): D597–D604.

    Google Scholar 

  • Guillou, L., Viprey, M., Chambouvet, A., Welsh, R. M., Kirkham, A. R., Massana, R., and Worden, A. Z., 2008. Widespread occurrence and genetic diversity of marine parasitoids belonging to Syndiniales (Alveolata). Environmental Microbiology, 10(12): 3349–3365.

    Google Scholar 

  • Iwataki, M., 2008. Taxonomy and identification of the armored dinoflagellate genus Heterocapsa (Peridiniales, Dinophyceae). Plankton and Benthos Research, 3(3): 135–142.

    Google Scholar 

  • Jeong, H. J., Doo, D., Park, J. Y., Song, J. Y., Kim, S. T., and Lee, S. H., 2005. Feeding by phototrophic red-tide dinoflagellates: Five species newly revealed and six species previously known to be mixotrophic. Aquatic Microbial Ecology, 40(2): 133–150, DOI: 10.3354/ame040133}.

    Google Scholar 

  • Jephcott, T. G., Alves-de-Souza, C., Gleason, F. H., Van Ogtrop, F. F., Sime-Ngando, T., Karpov, S. A., and Guillou, L., 2016. Ecological impacts of parasitic chytrids, syndiniales and perkinsids on populations of marine photosynthetic dinoflagellates. Fungal Ecology, 19: 47–58.

    Google Scholar 

  • Joli, N., Monier, A., Logares, R., and Lovejoy, C., 2017. Seasonal patterns in Arctic prasinophytes and inferred ecology of Bathycoccus unveiled in an Arctic winter metagenome. The International Society for Microbial Ecology Journal, 11(6): 1372–1385.

    Google Scholar 

  • Keeling, P. J., and Del Campo, J., 2017. Marine protists are not just big bacteria. Current Biology, 27(11): R541–R549.

    Google Scholar 

  • Kirkpatrick, L., and Feeney, B., 2012. A Simple Guide to IBM SPSS: For Version 20.0. Nelson education, Scarborough, 128pp.

    Google Scholar 

  • Langfelder, P., and Horvath, S., 2012. Fast R functions for robust correlations and hierarchical clustering. Journal of Statistical Software, 46(11): i11.

    Google Scholar 

  • Lefranc, M., Thenot, A., Lepère, C., and Debroas, D., 2005. Genetic diversity of small eukaryotes in lakes differing by their trophic status. Applied Environmental Microbiology, 71: 5935–5942.

    Google Scholar 

  • Levring, T., Hoppe, H. A., and Schmid, O. J., 2019. Marine Algae: A Survey of Research and Utilization. Walter De Gruyter, Berlin, 423pp.

    Google Scholar 

  • Li, X. H., Huang, J., Filker, S., Stoeck, T., Bi, Y. H., and Song, W. B., 2019. Spatio-temporal patterns of zooplankton in a mainstem dam affected tributary: A case study in the Xiangxi River of the Three Gorges Reservoir. Science China Life Science, 62: 1058–1069, DOI: https://doi.org/10.1007/s11427-018-9523-0.

    Google Scholar 

  • Lima-Mendez, G., Faust, K., Henry, N., Decelle, J., Colin, S., Carcillo, F., and Bittner, L., 2015. Determinants of community structure in the global plankton interactome. Science, 348(6237): 1262073.

    Google Scholar 

  • Liu, W. W., Jiang, J., Xu, Y., Pan, X., Qu, Z., Luo, X., El-Serehy, H. A., Warren, A., Ma, H., and Pan, H., 2017. Diversity of free-living marine ciliates (Alveolata, Ciliophora): Faunal studies in coastal waters of China during the years 2011–2016. European Journal of Protistology, 61: 424–438.

    Google Scholar 

  • Liu, W. W., Zhang, K. X., Chen, C., Li, J. Q., Tan, Y. H., Warren, A., Lin, X. F., and Song, W. B., 2019. Overview of the biodiversity and geographic distribution of aloricate oligotrich ciliates (Protozoa, Ciliophora, Spirotrichea) in coastal waters of southern China. Systematics and Biodiversity, 17(8): 787–800, DOI: https://doi.org/10.1080/14772000.2019.1691081.

    Google Scholar 

  • Luo, F., Zhong, J. X., Yang, Y. F., Scheuermann, R. H., and Zhou, J. Z., 2006. Application of random matrix theory to biological networks. Physics Letter A, 357: 420–423.

    Google Scholar 

  • Lynn, D. H., 2008. The Ciliated Protozoa: Characterization, Classification, and Guide to the Literature. Springer Verlag, Germany, 604pp.

    Google Scholar 

  • Ma, B., Wang, H. Z., Dsouza, M., Lou, J., He, Y., Dai, Z. M., Brookes, P. C., Xu, J. M., and Gilbert, J. A., 2016. Geographic patterns of co-occurrence network topological features for soil microbiota at continental scale in eastern China. The International Society for Microbial Ecology Journal, 10(8): 1891–1901.

    Google Scholar 

  • Massana, R., 2015. Protistan diversity in environmental molecular surveys. In: Marine Protists. Ohtsuka, S., et al., eds., Springer, Tokyo, 3–21.

    Google Scholar 

  • Mitra, A., Flynn, K. J., Tillmann, U., Raven, J., and Caron, D., 2016. Defining planktonic protist functional groups on mechanisms for energy and nutrient acquisition: Incorporation of diverse mixotrophic strategies. Protist, 167: 106–120.

    Google Scholar 

  • Montagnes, D. J., and Franklin, M., 2001. Effect of temperature on diatom volume, growth rate, and carbon and nitrogen content: Reconsidering some paradigms. Limnology and Oceanography, 46(8): 2008–2018.

    Google Scholar 

  • Moon-van der Staay, S. Y., De Wachter, R., and Vaulot, D., 2001. Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. Nature, 409(6820): 607–610.

    Google Scholar 

  • Nigrelli, L., and Thines, M., 2013. Tropical oomycetes in the German Bight-Climate warming or overlooked diversity? Fungal Ecology, 6(2): 152–160.

    Google Scholar 

  • Not, F., Del Campo, J., Balagué, V., De Vargas, C., and Massana, R., 2009. New insights into the diversity of marine picoeukaryotes. PLoS One, 4(9): e7143.

    Google Scholar 

  • Paffenhöfer, G. A., 1998. Heterotrophic protozoa and small metazoa: Feeding rates and prey-consumer interactions. Journal of Plankton Research, 20(1): 121–133.

    Google Scholar 

  • Pan, H. B., Zhang, Q. Q., Dong, J. Y., and Jiang, J. M., 2020. Morphology and phylogeny of two novel Pleurostomatids (Ciliophora, Litostomatea), with establishing a new genus. Journal of Eukaryotic Microbiology, 67(2): 252–262, DOI: https://doi.org/10.1111/jeu.12779.

    Google Scholar 

  • Pernice, M. C., Logares, R., Guillou, L., and Massana, R., 2013. General patterns of diversity in major marine microeukaryote lineages. PLoS One, 8(2): e57170.

    Google Scholar 

  • R Core, T., 2016. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, 3165pp.

    Google Scholar 

  • Raghukumar, S., 2002. Ecology of the marine protists, the Labyrinthulomycetes (Thraustochytrids and Labyrinthulids). European Journal of Protistology, 38(2): 127–145.

    Google Scholar 

  • Sassenhagen, I., Irion, S., Jardillier, L., Moreira, D., and Christaki, U., 2019. Protist interactions and community structure during early autumn in the Kerguelen region (Southern Ocean). Protist, 171(1): 125709.

    Google Scholar 

  • Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., and Hollister, E. B., 2009. Introducing mothur: Opensource, platform-independent, community supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 75(23): 7537–7541.

    Google Scholar 

  • Sherr, E. B., and Sherr, B. F., 2002. Significance of predation by protists in aquatic microbial food webs. Antonie van Leeuwenhoek, 81(1–4): 293–308.

    Google Scholar 

  • Song, W. B., Warren, A., and Hu, X. Z., 2009. Free-Living Ciliates in the Bohai and Yellow Seas, China. Science Press, Beijing, 518pp.

    Google Scholar 

  • Song, W., Xu, D. P., Zhang, Q. Q., Liu, W. W., Warren, A., and Song, W. B., 2019. Taxonomy and phylogeny of two poorly studied genera of marine oligotrich ciliates including descriptions of two new species: Cyrtostrombidium paraboreale sp. n. and Apostrombidium orientale sp. n. (Ciliophora: Spirotrichea). European Journal of Protistology, 70: 1–16.

    Google Scholar 

  • Stoecker, D. K., and Laventyev, P. J., 2018. Mixotrophic plankton in the polar seas: A pan-arctic review. Frontiers in Marine Science, 5: 292.

    Google Scholar 

  • Sumner, F. B., and Osburn, R. C., 1913. A Biological Survey of the Waters of Woods Hole and Vicinity: Part 1. Bulletin of the Bureau of Fisheries, United States, 545pp.

  • Sun, P., Huang, L. Y., Xu, D. P., Huang, B. Q., Chen, N. W., and Warren, A., 2017. Marked seasonality and high spatial variation in estuarine ciliates are driven by exchanges between the ‘abundant’ and ‘intermediate’ biospheres. Scientific Reports, 7(1): 1–12.

    Google Scholar 

  • Vannier, T., Leconte, J., Seeleuthner, Y., Mondy, S., Pelletier, E., Aury, J. M., and Wincker, P., 2016. Survey of the green picoalga Bathycoccus genomes in the global ocean. Scientific Reports, 6: 37900.

    Google Scholar 

  • Wang, B. D., 2009. Hydromorphological mechanisms leading to hypoxia off the Changjiang Estuary. Marine Environmental Research, 67(1): 53–58.

    Google Scholar 

  • Wei, G. F., Tang, D. L., and Wang, S. F., 2008. Distribution of chlorophyll and harmful algal blooms (HABs): A review on space-based studies in the coastal environments of Chinese marginal seas. Advances in Space Research, 41(1): 12–19.

    Google Scholar 

  • Wetzel, R. G., 1983. Attached algal-substrata interactions: Fact or myth, and when and how? In: Periphyton of Freshwater Ecosystems. Springer, Dordrecht, 207–215.

    Google Scholar 

  • Worden, A. Z., Follows, M. J., Giovannoni, S. J., Wilken, S., Zimmerman, A. E., and Keeling, P. J., 2015. Rethinking the marine carbon cycle: Factoring in the multifarious lifestyles of microbes. Science, 347(6223): 1257594, DOI: https://doi.org/10.1126/science.1257594.

    Google Scholar 

  • Xu, Y. J., Ishizaka, J., Yamaguchi, H., Siswanto, E., and Wang, S. Q., 2013. Relationships of interannual variability in SST and phytoplankton blooms with giant jellyfish (Nemopilema nomurai) outbreaks in the Yellow Sea and East China Sea. Journal of Oceanography, 69(5): 511–526.

    Google Scholar 

  • Zhang, W., and Xu, H. L., 2015. Seasonal shift in community pattern of periphytic ciliates and its environmental drivers in coastal waters of the Yellow Sea, northern China. Journal of the Marine Biological Association of the United Kingdom, 95(2): 277–288.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 31672251, 31772413), the Youth Innovation Promotion Association, CAS (No. 2019216), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA23050303), and the Key Research Project of Frontier Science, CAS (No. QYZDBSSW-DQC013-1). We specially thank Prof. Bin Ma from Zhejiang University for his kindly help in the co-occurrence network analyses.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qianqian Zhang or Daode Ji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Y., Zheng, P., Zhang, X. et al. Protist Interactions and Seasonal Dynamics in the Coast of Yantai, Northern Yellow Sea of China as Revealed by Metabarcoding. J. Ocean Univ. China 19, 961–974 (2020). https://doi.org/10.1007/s11802-020-4461-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-020-4461-x

Key words

Navigation