Skip to main content

Advertisement

Log in

Effects of Liaoning Hongyanhe Nuclear Power Plant on the Zooplankton Community in Summer of 2017

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

To evaluate the effects of the Hongyanhe Nuclear Power Plant on the zooplankton community in the surrounding seawater during summer, multiple environmental factors and zooplankton distribution along the east coast of Liaodong Bay were investigated in the summer of 2017. In particular, the influences of seawater temperature, salinity, and chlorophyll a (Chl a) on the zooplankton community were analyzed. Zooplankton abundances and Chl a concentrations along the east coast of Liaodong Bay showed an initial increase followed by a decrease from July to September. During the three months, the zooplankton abundance was the highest (8116.70 ind m−3) in August. The Shannon-Wiener index showed a downtrend from July to September, with the average value falling from 1.65 in July to 1.50 in September. Calanus sinicus, Paracalanus parvus, copepodid, and bivalve larvae were the dominant species/groups in the three months. The effects of the nuclear power plant’s outlet on the environment factors were mainly reflected in the increased seawater temperature. Redundancy analysis showed that the zooplankton community was jointly affected by seawater temperature, salinity and Chl a concentration, and the degree of this impact varied monthly. The impact of seawater temperature on the zooplankton community was stronger than that of salinity. The primary impact of the Hongyanhe Nuclear Power Plant on the structure and distribution of the zooplankton community in the surrounding seawater during the summer was increased seawater temperature, which caused a reduction in the abundance of dominant species/groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bamber, R. N., and Seaby, R. M. H., 2004. The effects of power station entrainment passage on three species of marine planktonic crustacean, Acartia tonsa (Copepoda), Crangon crangon (Decapoda) and Homarus gammarus (Decapoda). Marine Environmental Research, 57: 281–294, https://doi.org/10.1016/j.marenvres.2003.08.002.

    Google Scholar 

  • Bi, H. S., Sun, S., Gao, S. W., and Zhang, G. T., 2001. The ecological characteristics of Zooplankton community in the Bohai Sea II. The distribution of copepoda abundance and seasonal dynamics. Acta Ecologica Sinica, 21 (2): 177–185 (in Chinese with English abstract).

    Google Scholar 

  • Biard, T., Stemmann, L., Picheral, M., Mayot, N., Vandromme, P., Hauss, H., Gorsky, G., Guidi, L., Kiko, R., and Not, F., 2016. In situ imaging reveals the biomass of giant protists in the global ocean. Nature, 532: 504–507, https://doi.org/10.1038/nature17652.

    Google Scholar 

  • Cardoso-Mohedano, J. G., Bernardello, R., Sanchez-Cabeza, J. A., Ruiz-Fernández, A. C., Alonso-Rodriguez, R., and Cruzado, A., 2015. Thermal impact from a thermoelectric power plant on a tropical coastal lagoon. Water, Air, & Soil Pollution, 226: 1–11, https://doi.org/10.1007/s11270-014-2202-8.

    Google Scholar 

  • Chen, H. J., Yu, H., and Liu, G. X., 2016. Comparison of copepod collection efficiencies by three commonly used plankton nets: A case study in Bohai Sea, China. Journal of Ocean University of China, 15 (6): 1007–1013, https://doi.org/10.1007/s11802-016-3122-6.

    Google Scholar 

  • Daufresne, M., Lengfellner, K., Sommer, U., and Carpenter, S. R., 2009. Global warming benefits the small in aquatic ecosystems. Proceedings of the National Academy of Sciences, 106: 12788–12793, https://doi.org/10.1073/pnas.0902080106.

    Google Scholar 

  • Dessier, A., Bustamante, P., Chouvelon, T., Huret, M., Pagano, M., Marquis, E., Rousseaux, F., Pignon-Mussaud, C., Mornet, F., and Bréret, M., 2018. The spring mesozooplankton variability and its relationship with hydrobiological structure over year-to-year changes (2003–2013) in the southern Bay of Biscay (Northeast Atlantic). Progress in Oceanography, 166: 76–87, https://doi.org/10.1016/j.pocean.2018.04.011.

    Google Scholar 

  • Dias, C. D., and Bonecker, S. L. C., 2008. Long-term study of zooplankton in the estuarine system of Ribeira Bay, near a power plant (Rio de Janeiro, Brazil). Hydrobiologia, 614: 65–81, https://doi.org/10.1007/s10750-008-9537-3.

    Google Scholar 

  • Fang, Y., Fang, G. H., and Zhang, Q. H., 2000. Numerical simulation and dynamic study of the wintertime circulation of the Bohai Sea. Chinese Journal of Oceanology & Limnology, 18 (1): 1–9, https://doi.org/10.1007/BF02842535.

    Google Scholar 

  • Feng, S., Lin, J. N., Sun, S., Zhang, F., and Li, C. L., 2018. Hyposalinity and incremental micro-zooplankton supply in early-developed Nemopilema nomurai polyp survival, growth, and podocyst reproduction. Marine Ecology Progress Series, 591: 117–128, https://doi.org/10.3354/meps12204.

    Google Scholar 

  • Gao, W. S., Liu X. B., Zhang, Q. F., Xu, Y. S., Ma, Y. Y., He, R., and Liu, Y., 2014. Species diversity of zooplankton in the coastal area of Bohai Bay. Marine Sciences, 38: 55–60 (in Chinese with English abstract).

    Google Scholar 

  • Gillooly, F. J., 2000. Effect of body size and temperature on generation time in zooplankton. Journal of Plankton Research, 22: 241–251.

    Google Scholar 

  • Håkanson, L., and Eklund, J. M., 2010. Relationships between chlorophyll, salinity, phosphorus, and nitrogen in lakes and marine areas. Journal of Coastal Research, 26: 412–423, https://doi.org/10.2112/08-1121.1.

    Google Scholar 

  • Hung, T. C., Huang, C. C., and Shao, K. T., 2006. Ecological survey of coastal water adjacent to nuclear power plants in Taiwan. Chemistry and Ecology, 15: 129–142, https://doi.org/10.1080/02757549808037625.

    Google Scholar 

  • Huntley, M. E., and Lopez, M. D., 1992. Temperature-dependent production of marine copepods: A global synthesis. The American Naturalist, 140 (2): 201–242, https://doi.org/10.1086/285410.

    Google Scholar 

  • Irigoien, X., Huisman, J., and Harris, R. P., 2004. Global biodiversity patterns of marine phytoplankton and zooplankton. Nature, 429 (6994): 863–867, https://doi.org/10.1038/nature02593.

    Google Scholar 

  • Karas, P., 1992. Zooplankton entrainment at Swedish nuclear power plants. Marine Pollution Bulletin, 24: 27–32, https://doi.org/10.1016/0025-326X(92)90313-U.

    Google Scholar 

  • Kawahara, M., 2006. Unusual population explosion of the giant jellyfish Nemopilema nomurai (Scyphozoa: Rhizostomeae) in East Asian waters. Marine Ecology Progress Series, 307: 161–173, https://doi.org/10.3354/meps307161.

    Google Scholar 

  • Larson, A., 2014. Hongyanhe Nuclear Power Plant, Liaoning Province, China. Power, 158 (11): 24–25.

    Google Scholar 

  • Lee, P. W., Tseng, L. C., and Hwang, J. S., 2018. Comparison of mesozooplankton mortality impacted by the cooling systems of two nuclear power plants at the northern Taiwan coast, southern East China Sea. Marine Pollution Bulletin, 136: 114–124, https://doi.org/10.1016/j.marpolbul.2018.09.003.

    Google Scholar 

  • Li, J. Q., and Wang, L. H., 2009. Numerical simulation of temperature field in turbo-generators stator on cooling water blockage. Proceedings of the CSEE, 29 (12): 70–74 (in Chinese with English abstract).

    Google Scholar 

  • Li, K. Z., Yin, J. Q., Tan, Y. H., Huang, L. M., and Song, X. Y., 2014. Short-term variation in zooplankton community from Daya Bay with outbreaks of Penilia avirostris. Oceanologia, 56: 583–602, https://doi.org/10.5697/oc.56-3.583.

    Google Scholar 

  • Li, X. Z., and Qian, G., 2009. Labidocera euchaeta: Its distribution in Yangtze River Estuary and responses to global warming. Chinese Journal of Applied Ecology, 20: 1196 (in Chinese with English abstract).

    Google Scholar 

  • Lin, C. L., Su, J. L., Xu, B. R., and Tang, Q. S., 2001. Longterm variations of temperature and salinity of the Bohai Sea and their influence on its ecosystem. Progress in Oceanography, 49 (1–4): 7–19, https://doi.org/10.1016/S0079-6611(01)00013-1.

    Google Scholar 

  • Lin, K., and Holbert, K. E., 2009. Blockage diagnostics for nuclear power plant pressure transmitter sensing lines. Nuclear Engineering & Design, 239 (2): 365–372, https://doi.org/10.1016/j.nucengdes.2008.10.012.

    Google Scholar 

  • Liu, L. X., Wang, Y. J., Di, B. P., and Liu, D. Y., 2014. Spatial distribution of chlorophyll a and environmental factors in the Bohai Sea in spring of 2012. Marine Sciences, 38 (12): 8–15 (in Chinese with English abstract).

    Google Scholar 

  • Liu, Y. W., Wang, Z. Y., Cao, G. W., Cao, Y., and Huo, Y., 2017. Study on corrosion behavior of zinc exposed in coastal-industrial atmospheric environment. Materials Chemistry and Physics, 198: 243–249, https://doi.org/10.1016/j.matchemphys.2017.05.043.

    Google Scholar 

  • Loeb, V., Hofmann, E. E., Klinck, J. M., and Holm-Hansen, O., 2010. Hydrographic control of the marine ecosystem in the South Shetland-Elephant Island and Bransfield Strait region. Deep-Sea Research Part II — Topical Studies in Oceanography, 57: 519–542, https://doi.org/10.1016/j.dsr2.2009.10.004.

    Google Scholar 

  • Ma, Y. E., Ke, Z. X., Huang, L. M., and Tan, Y. H., 2014. Identification of human-induced perturbations in Daya Bay, China: Evidence from plankton size structure. Continental Shelf Research, 72: 10–20, https://doi.org/10.1016/j.csr.2013.10.012.

    Google Scholar 

  • Margalef, R., 1957. La teoria de la information en ecologia. Memorias de la Real Academia de Ciencias y Artes de Barcelona, 32: 373–499.

    Google Scholar 

  • Mayer-Pinto, M., Ignacio, B. L., Szechy, M. T. M., Viana, M. S., Curbelo-Fernandez, M. P., Lavrado, H. P., Junqueira, A. O. R., Vilanova, E., and Silva, S. H. G., 2012. How much is too little to detect impacts? A case study of a nuclear power plant. PLoS One, 7: e47871, https://doi.org/10.1371/journal.pone.0047871.

    Google Scholar 

  • Odum, E. P., 1959. Fundamentals of Ecology. W. B. Saunders Co., Philadelphia, 384pp.

    Google Scholar 

  • Parsons, T. R., Lebrasseur, R. J., and Fulton, J. D., 1967. Some observations on the dependence of zooplankton grazing on the cell size and concentration of phytoplankton blooms. Oceanographical Society of Japan, 23: 10–17, https://doi.org/10.5928/kaiyou1942.23.10.

    Google Scholar 

  • Perissinotto, R., and Wooldridge, T. H., 2010. Short-term thermal effects of a power-generating plant on zooplankton in the Swartkops Estuary, South Africa. Marine Ecology, 10: 205–219, https://doi.org/10.1111/j.1439-0485.1989.tb00473.x.

    Google Scholar 

  • Petrou, K., Doblin, M. A., and Ralph, P. J., 2011. Heterogeneity in the photoprotective capacity of three Antarctic diatoms during short-term changes in salinity and temperature. Marine Biology, 158: 1029–1041, https://doi.org/10.1007/s00227-011-1628-4.

    Google Scholar 

  • Pielou, E. C., 1966. The measurement of diversity in different types of biological collections. Journal of Theoretical Biology, 13: 131–144, https://doi.org/10.1016/0022-5193(66)90013-0.

    Google Scholar 

  • Plourde, S., Dodson, J. J., Runge, J. A., and Therriault, J. C., 2002. Spatial and temporal variations in copepod community structure in the lower St. Lawrence Estuary, Canada. Marine Ecology Progress Series, 230: 211–224, https://doi.org/10.3354/meps230211.

    Google Scholar 

  • Poornima, E. H., Rajadurai, M., Rao, T. S., Anupkumar, B., Rajamohan, R., Narasimhan, S. V., Rao, V. N. R., and Venugopalan, V. P., 2005. Impact of thermal discharge from a tropical coastal power plant on phytoplankton. Journal of Thermal Biology, 30: 307–316, https://doi.org/10.1016/j.jtherbio.2005.01.004.

    Google Scholar 

  • Pu, X. M., Sun, S., Yang, B., Ji, P., Zhang, Y., and Zhang, F., 2004. The combined effects of temperature and food supply on Calanus sinicus in the southern Yellow Sea in summer. Journal of Plankton Research, 26: 1049–1057, https://doi.org/10.1093/plankt/fbh097.

    Google Scholar 

  • Purcell, J. E., Uye, S. I., and Lo, W. T., 2007. Anthropogenic cause of jellyfish blooms and their direct consequences for humans: A review. Marine Ecology Progress Series, 350: 153–174, https://doi.org/10.3354/meps07093.

    Google Scholar 

  • Richardson, A. J., and Schoeman, D. S., 2004. Climate impact on plankton ecosystems in the Northeast Atlantic. Science, 305 (5690): 1609–1612, https://doi.org/10.1126/science.1100958.

    Google Scholar 

  • Roemmich, D., and Mcgowan, J., 1995. Climatic warming and the decline of zooplankton in the California Current. Science, 267 (5202): 1324–1326, https://doi.org/10.1126/science.267.5202.1324.

    Google Scholar 

  • Shannon, C., and Weaver, W., 1949. The Mathematical Theory of Communication. University of Illinois Press, Urbana, IL, 94pp.

    Google Scholar 

  • Shi, Y. Q., Sun, S., Zhang, G. T., Wang, S. W., and Li, C. L., 2015. Distribution pattern of zooplankton functional groups in the Yellow Sea in June: A possible cause for geographical separation of giant jellyfish species. Hydrobiologia, 754: 43–58, https://doi.org/10.1007/s10750-014-2070-7.

    Google Scholar 

  • Shiah, F. K., Tu, Y. Y., Tsai, H. S., Kao, S. J., and Jan, S., 2005. A case study of system and planktonic responses in a subtropical warm plume receiving thermal effluents from a power plant. Terrestrial Atmospheric and Oceanic Sciences, 16: 513–528, https://doi.org/10.3319/TAO.2005.16.2.513(O).

    Google Scholar 

  • Song, L., Zhou, Z. C., Wang, N. B., Ma, Z. Q., Xue, K., Tian, J., Yang, S., Wang, Z. H., and Wu, J. H., 2010. Zooplankton diversity of Liaodong Bay and relationship with oceanic environmental factors. Marine Sciences, 34: 35–39 (in Chinese with English abstract).

    Google Scholar 

  • Sun, S., Huo, Y. Z., and Yang, B., 2010. Zooplankton functional groups on the continental shelf of the Yellow Sea. Deep-Sea Research Part II-Topical Studies in Oceanography, 57 (11–12): 1006–1016, https://doi.org/10.1016/j.dsr2.2010.02.002.

    Google Scholar 

  • Tachibana, A., Itoh, H., and Yoshida, Y., 2013. Seasonal and annual change in community structure of meso-sized copepods in Tokyo Bay, Japan. Journal of Oceanography, 69: 545–556, https://doi.org/10.1007/s10872-013-0191-7.

    Google Scholar 

  • Tang, Q. S., Jin, X. S., Wang, J., Zhuang, Z. M., Cui, Y., and Meng, T. X., 2003. Decadal-scale variations of ecosystem productivity and control mechanisms in the Bohai Sea. Fisheries Oceanography, 12 (4–5): 223–233, https://doi.org/10.1046/j.1365-2419.2003.00251.x.

    Google Scholar 

  • Uye, S. I., 2011. Human forcing of the copepod-fish-jellyfish triangular trophic relationship. Hydrobiologia, 666: 71–83, https://doi.org/10.1007/s10750-010-0208-9.

    Google Scholar 

  • Uye, S. I., 2014. The giant jellyfish Nemopilema nomurai in East Asian marginal seas. In: Jellyfish Blooms. Pitt, K. A., and Lucas, C. H., eds., Springer, Dordrecht, 185–205, https://doi.org/10.1007/978-94-007-7015-7_8.

    Google Scholar 

  • Vandysh, O. I., 2012. Specific features of zooplankton community in industrially polluted areas of Subarctic Lake Imandra (Monche, Belaya, and Molochnaya Bays). Russian Journal of Ecology, 43: 390–397, https://doi.org/10.1134/S1067413612050153.

    Google Scholar 

  • Wang, Y., Fang, E. J., Guo, B., Gao, Y., and Hou, C. Q., 2014. Zooplankton community structure and its relationship with environmental factors in spring of Bohai Bay in Tianjin sea area. Marine Fisheries, 36: 300–305, doi: https://doi.org/10.10.13233/j.cnki.mar.fish.2014.04.004 (in Chinese with English abstract).

    Google Scholar 

  • Wang, X., Wang, X. X., Su, X., Meng, Q. H., Zou, D. J., Yin, X. D., Wang, L., Wen, S. Y., and Zhao, J. H., 2018. Thermal discharge monitoring of nuclear power plant with aerial remote sensing technology using a UAV platform: Take Hongyanhe Nuclear Power Plant, Liaoning Province, as example. Remote Sensing for Land and Resources, 30 (4): 182–186 (in Chinese with English abstract).

    Google Scholar 

  • Wang, Y. S., Lou, Z. P., Sun, C. C., Wang, H. L., Mitchell, B. G., Wu, M. L., and Deng, C., 2012. Identification of water quality and zooplankton characteristics in Daya Bay, China, from 2001 to 2004. Environmental Earth Sciences, 66: 655–671, https://doi.org/10.1007/s12665-011-1274-7.

    Google Scholar 

  • Wang, Z. H., Zhao, J. G., Zhang, Y. J., and Yu, C., 2009. Phytoplankton community structure and environmental parameters in aquaculture areas of Daya Bay, South China Sea. Journal of Environmental Sciences, 21: 1268–1275, https://doi.org/10.1016/S1001-0742(08)62414-6.

    Google Scholar 

  • Wu, Y. N., Wang, Y. Q., Hou, Q. M., Jiao, F., and Sun, G. C., 2017. Experience feedbacks on events of nuclear power plants cold source systems blocked by oceanic foreign matter. Nuclear Safety, 16 (1): 26–32 (in Chinese with English abstract).

    Google Scholar 

  • Yang, L., Liu, J., Zhang, J., Wang, X. L., Xu, Y., Li, X., and He, L., 2018. Zooplankton community variation and its relationship with environmental variables in Bohai Bay. Journal of Marine Sciences, 36 (1): 93–101 (in Chinese with English abstract).

    Google Scholar 

  • Ye, Y. Y., Chen, K. B., Zhou, Q. Q., Xiang, P., Huo, Y. L., and Lin, M., 2018. Impacts of thermal discharge on phytoplankton in Daya Bay. Journal of Coastal Research, 83: 135–147, https://doi.org/10.2112/SI83-022.1.

    Google Scholar 

  • Zhang, W. C., and Wang, R., 2000. Microzooplankton and their grazing pressure on phytoplankton in Bohai Sea. Oceanologia et Limnologia Sinica, 31: 252–258 (in Chinese with English abstract).

    Google Scholar 

  • Zhang, W. C., Wang, K., Gao, S. W., and Wang, R., 2002. Zooplankton in the Bohai Sea in spring and autumn. Oceanologia et Limnologia Sinica, 33: 630–639 (in Chinese with English abstract).

    Google Scholar 

  • Zhou, F., Huang, D. J., and Su, J. L., 2009. Numerical simulation of the dual-core structure of the Bohai Sea cold bottom water in summer. Chinese Science Bulletin, 54 (23): 4520–4528, https://doi.org/10.1007/s11434-009-0019-4.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (Nos. 2017YFC1404401, 2017YFC140 4402), the Science & Technology Basic Resources Investigation Program of China (No. 2017FY100803), and the National Natural Science Foundation of China (No. 4130 6155). We thank Dr. Natalie Kim for improving this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaolun Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Tao, Z., Wang, Y. et al. Effects of Liaoning Hongyanhe Nuclear Power Plant on the Zooplankton Community in Summer of 2017. J. Ocean Univ. China 19, 1140–1152 (2020). https://doi.org/10.1007/s11802-020-4420-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-020-4420-6

Key words

Navigation