Skip to main content
Log in

Isolation of Enterococcus faecium with Feeding Attractant Function from Pacific White Shrimp (Litopenaeus vannamei) Intestine

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

In the present study, we isolated the lactic acid bacterium strain SC-01 from Pacific white shrimp (Litopenaeus vannamei) intestine. Using conventional and molecular methods, we identified the bacterium as Enterococcus faecium, and found it had the function of feeding attractant and could inhibit the development of Vibrioparahaemolyticus (zone of inhibition: 14mm). The attractant effect of its fermentation broth is significantly better than that of the chemical attractant trimethylamine oxide (TMAO) (P <0.05), and is equivalent to that of dimethyl-beta-propiothetin (DMPT) based on the feeding behavior of shrimp. High performance liquid chromatography (HPLC) analysis suggested that inosine-5’-monophosphate (IMP) may be a component of the attractant. A biosecurity evaluation revealed a negative result in hemolytic assays, and no shrimp mortality was resulted from SC-01 fermentation broth challenge. Feeding trials (60 days) indicated that the SC-01 fermentation broth (viable counts: 5.7×109 cfumL−1) could improve feed intake, weight gain rate (WGR) and specific growth rate (SGR), and decrease the count of Vibrio sp. in the intestine of shrimp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdel-Rahman, M. A., Tashiro, Y., Zendo, T., Sakai, K., and Sonomoto, K., 2015. Enterococcus faecium QU 50: A novel thermophilic lactic acid bacterium for high-yield L-lactic acid production from xylose. Fems Microbiology Letters, 362(2): 1–7.

    Google Scholar 

  • Abdhul, K., Ganesh, M., Shanmughapriya, S., Kanagavel, M., Anbarasu, K., and Natarajaseenivasan, K., 2014. Antioxidant activity of exopolysaccharide from probiotic strain Enterococcus faecium (BDU7) from Ngari. International Journal of Biological Macromolecules, 70(8): 450–454.

    Google Scholar 

  • Adel, M., Yeganeh, S., Dawood, M. A. O., Safari, R., and Radhakrishnan, S., 2017. Effects of Pediococcus pentosaceus supplementation on growth performance, intestinal microflora and disease resistance of white shrimp, Litopenaeus vannamei. Aquaculture Nutrition, 23(6): 1401–1409.

    Google Scholar 

  • Alam, M. S., Watanabe, W. O., Sullivan, K. B., Rezek, T. C., and Seaton, P. J., 2012. Replacement of menhaden fish meal protein by solvent-extracted soybean meal protein in the diet of juvenile black sea bass supplemented with or without squid meal, krill meal, methionine, and lysine. North American Journal of Aquaculture, 74(2): 251–265.

    Google Scholar 

  • Avella, M. A., Olivotto, I., Silvi, S., Ribecco, C., Cresci, A., Palermo, F., Polzonetti, A., and Carnevali, O., 2011. Use of Enterococcus faecium to improve common sole (Solea solea) larviculture. Aquaculture, 315(3): 384–393.

    Google Scholar 

  • Azarm, H. M., and Lee, S. M., 2014. Effects of partial substitution of dietary fish meal by fermented soybean meal on growth performance, amino acid and biochemical parameters of juvenile black sea bream Acanthopagrus schlegeli. Aquaculture Research, 45(6): 994–1003.

    Google Scholar 

  • Banerjee, G., and Ray, A. K., 2017. The advancement of probiotics research and its application in fish farming industries. Research in Veterinary Science, 115: 66–77.

    Google Scholar 

  • Bernheimer, A. W., 1988. Assay of Hemolytic Toxins, Methods in Enzymology. Academic Press, Amsterdam, 213–217.

    Google Scholar 

  • Bogut, I., Milakovic, Z., Kristek, S., Novoselic, D., and Bukvic, Z., 2000. Effect of Enterococcus faecium on the growth rate and content of intestinal microflora in sheat fish (Silurus glanis). VeterinárníMedicina, 45(4): 107–109.

    Google Scholar 

  • Cai, C. F., and Ye, Y. T., 2005. A screening method for an aquatic animal attractant. CN 1672553A, China.

  • Coolbear, T., Weimer, B., and Wilkinson, M. G., 2011. Lactic acid bacteria in flavor development. Encyclopedia of Dairy Sciences, 73(2): 160–165.

    Google Scholar 

  • Daniel, P. C., and Bayer, R. C., 1987. Attraction of predatorily naive postlarval lobsters to extracts of metabolites of common prey: Mytilus edulis, Mya arenaria, Cancer irroratus, and Asterias vulgaris. Journal of Chemical Ecology, 13(5): 1201–1215.

    Google Scholar 

  • Gatesoupe, F. J., 2008. Updating the importance of lactic acid bacteria in fish farming: Natural occurrence and probiotic treatments. Journal of Molecular Microbiology & Biotechnology, 14(1–3): 107–114.

    Google Scholar 

  • Gould, J. C., 1952. The determination of bacterial sensitivity to antibiotics. Edinburgh Medical Journal, 59(4): 178–200.

    Google Scholar 

  • Guerenstein, P. G., Lorenzo, M. G., Nunez, J., and Lazzari, C. R., 1995. Baker’s yeast, an attractant for baiting traps for Chagas’ disease vectors. Experientia, 51(8): 834–837.

    Google Scholar 

  • Han, X. Y., Sun, D. Q., Xiang, L., Huo, G. C., and Jiang, Y. J., 2007. Gene regulation to lactic acid bacteria for increasing production of flavor metabolite. Acta Microbiologica Sinica, 47(6): 1105–1109.

    Google Scholar 

  • Herranz, C., Casaus, P., Mukhopadhyay, S., Martinez, J. M., Rodriguez, J. M., Nes, I. F., Hernández, P. E., and Cintas, L. M., 2001. Enterococcus faecium P21: A strain occurring naturally in dry-fermented sausages producing the class II bacteriocins enterocin A and enterocin B. Food Microbiology, 18(2): 115–131.

    Google Scholar 

  • Hidaka, I., Kohbara, J., Araki, T., Morishita, T., Miyajima, T., Shimizu, S., and Kuriyama, I., 2000. Identification of feeding stimulants from a jack mackerel muscle extract for young yellowtail Seriola quinqueradiata. Aquaculture, 181: 115–126.

    Google Scholar 

  • Holt, J., 1994. Bergey’sManual of Determinative Bacteriology. 9th edition. Lippincott Williams & Wilkins, Philadelphia, 787pp.

    Google Scholar 

  • Ikeda, I., Hosokawa, H., Shimeno, S., and Takeda, M., 1988. Studies on feeding stimulants for jack mackerel-I. Identification of feeding stimulant for jack mackerel in its muscle extract. Nippon Suisan Gakkaishi, 54(2): 229–233.

    Google Scholar 

  • Kim, H. S., and Cho, S. H., 2019. Dietary inclusion effect of feed ingredients showing high feeding attractiveness to rockfish (Sebastes schlegeli Hilgendorf 1880) on the growth performance, feed utilization, condition factor and whole body composition of fish (II). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 231: 66–73.

    Google Scholar 

  • Kolkovski, S., Czesny, S., and Dabrowski, K., 2010. Use of krill hydrolysate as a feed attractant for fish larvae and juveniles. Journal of the World Aquaculture Society, 31(1): 81–88.

    Google Scholar 

  • Liu, X., Steele, J. C., and Meng, X. Z., 2017. Usage, residue, and human health risk of antibiotics in Chinese aquaculture: A review. Environmental Pollution, 223: 161–169.

    Google Scholar 

  • Mato, J., van Haastert, P. J., Krens, F. A., and Konijn, T. M., 1977. An acrasin-like attractant from yeast extract specific for Dictyostelium lacteum. Developmental Biology, 57(2): 450–453.

    Google Scholar 

  • Millar, J. G., Chaney, J. D., and Mulla, M. S., 1992. Identification of oviposition attractants for Culex quinquefasciatus from fermented bermuda grass infusions. Journal of the American Mosquito Control Association, 8(1): 11–17.

    Google Scholar 

  • Miyazaki, Y., Kamiya, S., Hanawa, T., Fukuda, M., Kawakami, H., Takahashi, H., and Yokota, H., 2010. Effect of probiotic bacterial strains of Lactobacillus, Bifidobacterium, and Enterococcuson enteroaggregative Escherichia coli. Journal of Infection & Chemotherapy Official Journal of the Japan Society of Chemotherapy, 16(1): 10–18.

    Google Scholar 

  • Murai, T., Sumalangcay, A., and Piedadpascual, F., 1983. Supplement of various attractants to a practical diet for juvenile Penaeus monodon Fabricius. Fisheries Research Journal of the Philippines, 8(2): 61–67.

    Google Scholar 

  • Nayak, S. K., 2010. Role of gastrointestinal microbiota in fish. Aquaculture Research, 41(11): 1553–1573.

    Google Scholar 

  • Nunes, A. J. P., Sá, M. V. C., Andriola-Neto, F. F., and Lemos, D., 2006. Behavioral response to selected feed attractants and stimulants in Pacific white shrimp, Litopenaeus vannamei. Aquaculture, 260(1): 244–254.

    Google Scholar 

  • Olsén, K. H., and Lundh, T., 2016. Feeding stimulants in an omnivorous species, crucian carp Carassius carassius (Linnaeus 1758). Aquaculture Reports, 4: 66–73.

    Google Scholar 

  • Papatryphon, E., and Joseph, H. S., 2000. The effect of dietary feeding stimulants on growth performance of striped bass, Morone saxatilis, fed-a-plant feedstuff-based diet. Aquaculture, 185(3–4): 329–338.

    Google Scholar 

  • Pratoomyot, J., Bendiksen, E., Bell, J. G., and Tocher, D. R., 2010. Effects of increasing replacement of dietary fishmeal with plant protein sources on growth performance and body lipid composition of Atlantic salmon (Salmo salar L.). Aquaculture, 305(1): 124–132.

    Google Scholar 

  • Qiu, X., and Davis, D. A., 2018. Evaluation of dried fermented biomass as a feed ingredient in plant-based practical diets for juvenile Pacific white shrimp Litopenaeus vannamei. Aquaculture Nutrition, 24(1): 383–391.

    Google Scholar 

  • Ringø, E., and Gatesoupe, F. J., 1998. Lactic acid bacteria in fish: A review. Aquaculture, 160(3–4): 177–203.

    Google Scholar 

  • Rombenso, A., Crouse, C., and Trushenski, J., 2013. Comparison of traditional and fermented soybean meals as alternatives to fish meal in hybrid striped bass feeds. North American Journal of Aquaculture, 75(2): 197–204.

    Google Scholar 

  • Silva-Neto, J. F., Nunes, A. J. P., Sabry-Neto, H., and Sá, M. V. C., 2012. Spirulina meal has acted as a strong feeding attractant for Litopenaeus vannamei at a very low dietary inclusion level. Aquaculture Research, 43(3): 430–437.

    Google Scholar 

  • Smith, D. M., Tabrett, S. J., Barclay, M. C., and Irvin, S. J., 2005. The efficacy of ingredients included in shrimp feeds to stimulate intake. Aquaculture Nutrition, 11(4): 263–272.

    Google Scholar 

  • Sun, Y. Z., Yang, H. L., Ma, R. L., Huang, K. P., and Ye, J. D., 2012. Culture-independent characterization of the autochthonous gut microbiota of grouper Epinephelus coioides following the administration of probiotic Enterococcus faecium. Aquaculture International, 20(4): 791–801.

    Google Scholar 

  • Sun, Y. Z., Yang, H. L., Ma, R. L., and Song, K., 2010. Survival of lactic acid bacteria isolated from gut of Epinephelus coioides in mimic gastrointestinal environments. Journal of Fishery Sciences of China, 17(1): 128–136 (in Chinese with English abstract).

    Google Scholar 

  • Sun, Y. Z., Yang, H. L., Ma, R. L., Song, K., and Li, J. S., 2012. Effect of Lactococcus lactis and Enterococcus faecium on growth performance, digestive enzymes and immune response of grouper Epinephelus coioides. Aquaculture Nutrition, 18(3): 281–289.

    Google Scholar 

  • Swain, S. M., Singh, C., and Arul, V., 2009. Inhibitory activity of probiotics Streptococcus phocae PI80 and Enterococcus faecium MC13 against Vibriosis in shrimp Penaeus monodon. World Journal of Microbiology & Biotechnology, 25(4): 697–703.

    Google Scholar 

  • Tusche, K., Nagel, F., Arning, S., Wuertz, S., Susenbeth, A., and Schulz, C., 2013. Effect of different dietary levels of potato protein concentrate supplemented with feed attractants on growth performance of rainbow trout (Oncorhynchus mykiss). Animal Feed Science and Technology, 183(3): 202–209.

    Google Scholar 

  • Utrio, P., and Eriksson, K., 1977. Volatile fermentation products as attractants for Macrolepidoptera. Annales Zoologici Fennici, 14(2): 98–104.

    Google Scholar 

  • Wang, Y. B., Tian, Z. Q., Yao, J. T., and Li, W. F., 2008. Effect of probiotics, Enteroccus faecium, on tilapia (Oreochromis niloticus) growth performance and immune response. Aquaculture, 277(3): 203–207.

    Google Scholar 

  • Xing, C. F., Hu, H. H., Huang, J. B., Fang, H. C., Kai, Y. H., Wu, Y. C., and Chi, S. C., 2013. Diet supplementation of Pediococcus pentosaceusin cobia (Rachycentron canadum) enhances growth rate, respiratory burst and resistance against photobacteriosis. Fish & Shellfish Immunology, 35(4): 1122–1128.

    Google Scholar 

  • Zhang, L., Mai, K. S., Tan, B. P., Ai, Q. H., Qi, C. Z., Xu, W., Zhang, W. B., Fu, Z. G., Wang, X. J., and Ma, H. M., 2010. Effects of dietary administration of probiotic Halomonas sp. b12 on the intestinal microflora, immunological parameters, and midgut histological structure of shrimp, Fenneropenaeus chinensis. Journal of the World Aquaculture Society, 40(1): 58–66.

    Google Scholar 

  • Zhang, Q., Tan, B. P., Mai, K. S., Zhang, W. B., Ma, H. M., Ai, Q. H., Wang, X. J., and Liufu, Z. G., 2011. Dietary administration of Bacillus (B. licheniformis and B. subtilis) and isomaltooligosaccharide influences the intestinal microflora, immunological parameters and resistance against Vibrio alginolyticus in shrimp, Penaeus japonicus (Decapoda: Penaeidae). Aquaculture Research, 42(7): 943–952.

    Google Scholar 

  • Zhang, W., Liu, M. Q., and Dai, X. J., 2013. Biological characteristics and probiotic effect of Leuconostoc lactis strain isolated from the intestine of black porgy fish. Brazilian Journal of Microbiology, 44(3): 685–691.

    Google Scholar 

  • Zheng, X. T., Duan, Y. F., Dong, H. B., and Zhang, J. S., 2017. Effects of dietary Lactobacillus plantarum in different treatments on growth performance and immune gene expression of white shrimp Litopenaeus vannamei under normal condition and stress of acute low salinity. Fish & Shellfish Immunology, 62: 195–201.

    Google Scholar 

Download references

Acknowledgement

This research was supported by the Special Fund for Qingdao Marine Biomedical Science and Technology Innovation Center, China (No. 2017-CXZX01-3-13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingshan Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Lu, C., Yu, Z. et al. Isolation of Enterococcus faecium with Feeding Attractant Function from Pacific White Shrimp (Litopenaeus vannamei) Intestine. J. Ocean Univ. China 19, 931–940 (2020). https://doi.org/10.1007/s11802-020-4342-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-020-4342-3

Key words

Navigation