Skip to main content
Log in

Reducing the Common Environmental Effect on Litopenaeus vannamei Body Weight by Rearing Communally at Early Developmental Stages and Using a Reconstructed Pedigree

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

Heritability estimates may be severely biased when a large common environmental effect on a family arises from a long-lasting separate rearing at early stages (SRES) in traditional selective breeding programs, especially when bred populations have weak genetic ties. Communal rearing at early stages (CRES) may reduce common environmental effect since all families are reared in the same environment immediately after hatching. Here, we compared the effects of CRES and SRES strategies on genetic parameter estimation for harvest body weight in a selective breeding population of Litopenaeus vannamei with a small number of half-sib families. Genetic parameters of each strategy were estimated by using animal models excluding and including the common environmental effect (Model 1 and Model 2, respectively). Heritability estimates for body weight were 0.21±0.06 (P <0.05) and 0.69±0.09 (P <0.05) for CRES and SRES, respectively, in Model 1, and 0.21 ±0.06 (P <0.05) and 0.52±0.27 (P >0.05) in Model 2. The ratio of common environmental variance to phenotypic variance was 0.002 ±0.000 and 0.071 ±0.112 for CRES and SRES, respectively. Neither strategy precisely partitioned the common environmental variance according to likelihood ratio test. Lower heritability for body weight in CRES than in SRES implied that a large common environmental variance was confounded with additive genetic variance and was not effectively partitioned in SRES. Moreover, genetic correlation of body weight between the two strategies was 0.75±0.15, indicating that family rankings truly changed. The CRES should be followed in the selective breeding program of shrimp, especially in a population with a shallow pedigree and weak genetic ties between families.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andriantahina, F., Liu, X., Huang, H., and Xiang, J., 2012. Response to selection, heritability and genetic correlations between body weight and body size in Pacific white shrimp, Litopenaeus vannamei. Chinese Journal of Oceanology and Limnology, 30: 200–205, https://doi.org/10.1007/s00343-012-1066-2.

    Google Scholar 

  • Arce, S. M., Argue, B. J., Thompson, B. A., and Moss, S. M., 2003. Evaluation of a fluorescent, alphanumeric tagging system for penaeid shrimp and its application in selective breeding programs. Aquaculture, 121: 313–326, https://doi.org/10.1016/S0044-8486(03)00267-9.

    Google Scholar 

  • Argue, B. J., Arce, S. M., Lotz, J. M., and Moss, S. M., 2002. Selective breeding of Pacific white shrimp (Litopenaeus vannamei) for growth and resistance to Taura syndrome virus. Aquaculture, 204: 447–460, https://doi.org/10.1016/S0044-8486(01)00830-4.

    Google Scholar 

  • Castillo-Juárez, H., Casares, J. C. Q., Campos-Montes, G., Villela, C. C., Ortega, A. M., and Montaldo, H. H., 2007. Heritability for body weight at harvest size in the Pacific white shrimp, Penaeus (Litopenaeus) vannamei, from a multi-environment experiment using univariate and multivariate animal models. Aquaculture, 273: 42–49, https://doi.org/10.1016/j.aquaculture.2007.09.023.

    Google Scholar 

  • Cruz, P., Ibarra, A. M., Mejia-Ruiz, H., and Gaffney, P. M., 2004. Genetic variability assessed by microsatellites in a breeding program of Pacific white shrimp (Litopenaeus vannamei). Marine Biotechnology, 6: 157–164, https://doi.org/10.1007/s10126-003-0017-5.

    Google Scholar 

  • Dong, S. R., Kong, J., Zhang, T. S., Meng, X. H., and Wang, R. C., 2006. Parentage determination of Chinese shrimp (Fenneropenaeus chinensis) based on microsatellite DNA markers. Aquaculture, 258: 283–288, https://doi.org/10.1016/j.aquaculture.2006.04.044.

    Google Scholar 

  • FAO, 2018. The State of World Fisheries and Aquaculture. Rome, 223pp.

  • Fishback, A. G., Danzmann, R. G., Ferguson, M. M., and Gibson, J. P., 2002. Estimates of genetic parameters and genotype by environment interactions for growth traits of the rainbow trout (Oncorhynchus mykiss) as inferred using molecular pedigrees. Aquaculture, 206: 137–150, https://doi.org/10.1016/S0044-8486(01)00707-4.

    Google Scholar 

  • Fjalestad, K. T., Gjedrem, T., Carr, W. H., and Sweeney, J., 1997. The shrimp breeding program. Selective breeding of Penaeus vannamei. AKVAFORSK, Report no 17/97, 85pp.

  • Fjalestad, K. T., Moen, T., and Gomez-Raya, L., 2003. Prospects for genetic technology in salmon breeding programmes. Aquaculture Research, 34: 397–406, https://doi.org/10.1046/j.1365-2109.2003.00823.x.

    Google Scholar 

  • Fu, J., Shen, Y., Xu, X., and Li, J., 2016. Genetic parameter estimates for growth of grass carp, Ctenopharyngodon idella, at 10 and 18 months of age. Aquaculture, 450: 342–348, https://doi.org/10.1016/j.aquaculture.2015.08.018.

    Google Scholar 

  • Garcia, D. K., and Alcivar-Warren, A., 2007. Characterization of 35 new microsatellite genetic markers for the Pacific whiteleg shrimp, Litopenaeus vannamei: Their usefulness for studying genetic diversity of wild and culture stocks, tracing pedigree in breeding programs and linkage mapping. Journal of Shellfish Research, 26: 1203–1216, https://doi.org/10.2983/0730-8000(2007)26[1203:CONMGM]2.0.CO;2.

    Google Scholar 

  • Gheyas, A. A., Woolliams, J. A., Taggart, J. B., Sattar, M. A., Das, T. K., McAndrew, B. J., and Penman, D. J., 2009. Heritability estimation of silver carp (Hypophthalmichthys molitrix) harvest traits using microsatellite based parentage assignment. Aquaculture, 294: 187–193, https://doi.org/10.1016/j.aquaculture.2009.06.013.

    Google Scholar 

  • Gilmour, A. R., Gogel, B. J., Cullis, B. R., and Thompson, R., 2009. ASReml User Guide Release 3.0. VSN.

  • Gitterle, T., Johansen, H., Erazo, C., Lozano, C., Cock, J., and Salazar, M., 2007. Response to multi trait selection for harvest body weight, overall survival, and resistance to white spot syndrome virus (WSSV) in Penaeus (Litopenaeus). Aquaculture, 272(Suppl 1): S262, https://doi.org/10.1016/j.aquaculture.2007.07.073.

    Google Scholar 

  • Gitterle, T., Rye, M., Salte, R., Cock, J., Johansen, H., Lozano, C., Suarez, J. A., and Gjerde, B., 2005. Genetic (co)variation in harvest body weight and survival in Penaeus (Litopenaeus) vannamei under standard commercial conditions. Aquaculture, 243: 83–92, https://doi.org/10.1016/j.aquaculture.2004.10.015.

    Google Scholar 

  • Godin, D. M., Carr, W. H., Hagino, G., Seguro, F., Sweeney, J. N., and Blankenship, L., 1996. Evaluation of a fluorescent elastomer internal tag in juvenile and adult shrimp Penaeus vannamei. Aquaculture, 139: 243–248, https://doi.org/10.1016/0044-8486(95)01174-9.

    Google Scholar 

  • Huang, Y., Yin, Z., Weng, S., He, J., and Li, S., 2012. Selective breeding and preliminary commercial performance of Penaeus vannamei for resistance to white spot syndrome virus (WSSV). Aquaculture, 364–365: 111–117, https://doi.org/10.1016/j.aquaculture.2012.08.002.

    Google Scholar 

  • Jerry, D. R., Preston, N. P., Crocos, P. J., Keys, S., Meadows, J. R., and Li, Y., 2004. Parentage determination of Kuruma shrimp Penaeus (Marsupenaeus) japonicus using microsatellite markers (Bate). Aquaculture, 235: 237–247, https://doi.org/10.1016/j.aquaculture.2004.01.019.

    Google Scholar 

  • Jerry, D. R., Stewart, T., Purvis, I. W., and Piper, L. R., 2001. Evaluation of visual implant elastomer and alphanumeric internal tags as a method to identify juveniles of the freshwater crayfish, Cherax destructor. Aquaculture, 193: 149–154, https://doi.org/10.1016/S0044-8486(00)00477-4.

    Google Scholar 

  • Kalinowski, S. T., Taper, M. L., and Marshall, T. C., 2007. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Molecular Ecology, 16: 1099–1106, https://doi.org/10.1111/j.1365-294X.2007.03089.x.

    Google Scholar 

  • Karaket, T., Poompuang, S., Na-Nakorn, U., Kamonrat, W., and Hallerman, E. M., 2011. DNA microsatellite-based evaluation of early growth performance among strains of freshwater prawn Macrobrachium rosenbergii de Man. Aquaculture, 311: 115–122, https://doi.org/10.1016/j.aquaculture.2010.11.042.

    Google Scholar 

  • Kenway, M., Matthew, M., Salmon, M., McPhee, C., Benzie, J., Wilson, K., and Knibb, W., 2006. Heritability and genetic correlations of growth and survival in black tiger prawn Penaeus monodon reared in tanks. Aquaculture, 259: 138–145, https://doi.org/10.1016/j.aquaculture.2006.05.042.

    Google Scholar 

  • Kocour, M., Mauger, S., Rodina, M., Gela, D., Linhart, O., and Vandeputte, M., 2007. Heritability estimates for processing and quality traits in common carp (Cyprinus carpio L.) using a molecular pedigree. Aquaculture, 270: 43–50, https://doi.org/10.1016/j.aquaculture.2007.03.001.

    Google Scholar 

  • Kong, N., Li, Q., Yu, H., and Kong, L., 2015. Heritability estimates for growth-related traits in the Pacific oyster (Crassostrea gigas) using a molecular pedigree. Aquaculture Research, 46: 499–508, https://doi.org/10.1111/are.12205.

    Google Scholar 

  • Kristjánsson, T., and Arnason, T., 2016. Heritability of economically important traits in the Atlantic cod Gadus morhua L. Aquaculture Research, 47: 349–356, https://doi.org/10.1111/are.12496.

    Google Scholar 

  • Li, D. Y., Kong, J., Meng, X. H., Luan, S., Luo, K., Lu, X., and Cao, B. X., 2016. Development of multiplex PCR systems of microsatellite markers for Pacific white shrimp (Litopenaeus vannamei) and its application for parentage identification. Progress in Fishery Sciences, 37: 58–67 (in Chinese with English abstract).

    Google Scholar 

  • Li, W. J., Luan, S., Luo, K., Sui, J., Xu, X. D., and Tan, J., 2015. Genetic parameters and genotype by environment interaction for cold tolerance, body weight and survival of the Pacific white shrimp Penaeus vannamei at different temperatures. Aquaculture, 441: 8–15, https://doi.org/10.1016/j.aquaculture.2015.02.013.

    Google Scholar 

  • Liu, P., Kong, J., Shi, T., Zhuang, Z., Deng, J., and Xu, H., 2000. RAPD analysis of wild stock of penaeid shrimp (Penaeus chinensis) in the China’s coastal waters of Huanghai and Bohai Seas. Acta Oceanologica Sinica, 22: 89–93 (in Chinese with English abstract).

    Google Scholar 

  • Luan, S., Yang, G. L., Wang, J. Y., Luo, K., Zhang, Y F., and Gao, Q., 2012. Genetic parameters and response to selection for harvest body weight of the giant freshwater prawn Macrobrachium rosenbergii. Aquaculture, 362–363: 88–96, https://doi.org/10.1016/j.aquaculture.2012.05.011.

    Google Scholar 

  • Navarro, A., Zamorano, M. J., Hildebrandt, S., Gines, R., Aguilera, C., and Afonso, J. M., 2009. Estimates of heritabilities and genetic correlations for growth and carcass traits in gilt-head seabream (Sparus auratus L.), under industrial conditions. Aquaculture, 289: 225–230, https://doi.org/10.1111/are.12290.

    Google Scholar 

  • Nguyen, N. H., Quinn, J., Powell, D., Elizur, A., Thoa, N. P., and Nocillado, J., 2014. Heritability for body colour and its genetic association with morphometric traits in Banana shrimp (Fenneropenaeus merguiensis). BMC Genetics, 15: 132, https://doi.org/10.1186/s12863-014-0132-5.

    Google Scholar 

  • Ninh, N. H., Ponzoni, R. W., Nguyen, N. H., Woolliams, J. A., Taggart, J. B., and McAndrew, B. J., 2011. A comparison of communal and separate rearing of families in selective breeding of common carp (Cyprinus carpio): Estimation of genetic parameters. Aquaculture, 322–323: 39–46, https://doi.org/10.1016/j.aquaculture.2011.09.031.

    Google Scholar 

  • Ninh, N. H., Ponzoni, R. W., Nguyen, N. H., Woolliams, J. A., Taggart, J. B., and McAndrew, B. J., 2013. A comparison of communal and separate rearing of families in selective breeding of common carp (Cyprinus carpio): Responses to selection. Aquaculture, 408: 152–159, https://doi.org/10.1016/j.aquaculture.2013.06.005.

    Google Scholar 

  • Nolasco-Alzaga, H. R., Perez-Enriquez, R., Enez, F., Bestin, A., Palacios, E., and Haffray, P., 2017. Quantitative genetic parameters of growth and fatty acid content in the hemolymph of the whiteleg shrimp Litopenaeus vannamei. Aquaculture, 482: 17–23, https://doi.org/10.1016/j.aquaculture.2017.09.015.

    Google Scholar 

  • Norris, A., Bradley, D. G., and Cunningham, E. P., 2000. Parentage and relatedness determination in farmed Atlantic salmon (Salmo salar) using microsatellite markers. Aquaculture, 182: 73–83, https://doi.org/10.1016/S0044-8486(99)00247-1.

    Google Scholar 

  • Omasaki, S. K., van Arendonk, J. A. M., Kahi, A. K., and Komen, H., 2016. Defining a breeding objective for Nile tilapia that takes into account the diversity of smallholder production systems. Journal of Animal Breeding and Genetics, 133: 404–413, https://doi.org/10.1111/jbg.12210.

    Google Scholar 

  • Pérez-Enriquez, R., and Max-Aguilar, A., 2016. Pedigree traceability in whiteleg shrimp (Litopenaeus vannamei) using genetic markers: A comparison between microsatellites and SNPs. CienciasMarinas, 42: 227–235, https://doi.org/10.7773/cm.v42i4.2662.

    Google Scholar 

  • Robertson, A., 1959. The sampling variance of the genetic correlation coefficient. Biometrics, 15: 469–485, https://doi.org/10.2307/3001774.

    Google Scholar 

  • Rodzen, J. A., Famula, T. R., and May, B., 2004. Estimation of parentage and relatedness in the polyploid white sturgeon (Acipenser transmontanus) using a dominant marker approach for duplicated microsatellite loci. Aquaculture, 232: 165–182, https://doi.org/10.1016/S0044-8486(03)00450-2.

    Google Scholar 

  • Sae-Lim, P., Kause, A., Mulder, H. A., Martin, K. E., Barfoot, A. J., Parsons, J. E., Davidson, J., Rexroad III, C. E., van Arendonk, J. A. M., and Komen, H., 2013. Genotype-by-environment interaction of growth traits in rainbow trout (Oncorhynchus mykiss): A continental scale study. Journal of Animal Science, 91: 5572–5581, https://doi.org/10.2527/jas.2012-5949.

    Google Scholar 

  • Stram, D. O., and Lee, J. W., 1994. Variance components testing in the longitudinal mixed effects model. Biometrics, 50: 1171–1177, https://doi.org/10.2307/2533455.

    Google Scholar 

  • Sui, J., Luan, S., Luo, K., Meng, X. H., Lu, X., and Cao, B. X., 2015. Genetic parameters and response to selection for harvest body weight of Pacific white shrimp, Litopenaeus vannamei. Aquaculture Research, 1: 1–9, https://doi.org/10.1111/are.12729.

    Google Scholar 

  • Tan, J., Luan, S., Luo K., Guan, J. T., Li, W. J., and Sui, J., 2016. Heritability and genotype by environment interactions for growth and survival in Litopenaeus vannamei at low and high densities. Aquaculture Research, 48: 1430–1438, https://doi.org/10.1111/are.12978.

    Google Scholar 

  • Valles-Jimenez, R., Cruz, P., and Perez-Enriquez, R., 2004. Population genetic structure of Pacific white shrimp (Litopenaeus vannamei) from Mexico to Panama: Microsatellite DNA variation. Marine Biotechnology, 6: 475–484, https://doi.org/10.1007/s10126-004-3138-6.

    Google Scholar 

  • Vandeputte, M., Kocour, M., Mauger, S., Dupont-Nivet, M., De Guerry, D., and Rodina, M., 2004. Heritability estimates for growth-related traits using microsatellite parentage assignment in juvenile common carp (Cyprinus carpio L.). Aquaculture, 235: 223–236, https://doi.org/10.1016/j.aquaculture.2003.12.019.

    Google Scholar 

  • Vandeputte, M., Kocour, M., Mauger, S., Rodina, M., Launay, A., and Gela, D., 2008. Genetic variation for growth at one and two summers of age in the common carp (Cyprinus carpio L.): Heritability estimates and response to selection. Aquaculture, 277: 7–13, https://doi.org/10.1016/j.aquaculture.2008.02.009.

    Google Scholar 

  • Wilson, A. J., Réale, D., Clements, M. N., Morrissey, M. M., Postma, E., and Walling, C. A., 2010. An ecologist’s guide to the animal model. Journal of Animal Ecology, 79: 13–26, https://doi.org/10.1111/j.1365-2656.2009.01639.x.

    Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Key R&D Program of China (No. 2018YFD0901301), the Shandong Province’s Agricultural Seed Improvement Project (No. 2017LZN011), the Central Public-interest Scientific Institution Basal Research Fund, CAFS (No. 20603 022020003), the China Agriculture Research System (CARS-48), the Projects of International Exchange and Cooperation in Agriculture of Ministry of Agriculture and Rural Affairs of China-Science, Technology and Innovation Cooperation in Aquaculture with Tropical Countries, the Introduction of International Advanced Agricultural Science and Technology Plan of China (No. 2016-X39), and the Major Applied Technology Innovation Project of Agriculture in Shandong Province (No. SD2019YY001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng Luan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, Z., Kong, J., Hao, D. et al. Reducing the Common Environmental Effect on Litopenaeus vannamei Body Weight by Rearing Communally at Early Developmental Stages and Using a Reconstructed Pedigree. J. Ocean Univ. China 19, 923–930 (2020). https://doi.org/10.1007/s11802-020-4324-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-020-4324-5

Key words

Navigation