Skip to main content
Log in

Research Progress of Seafloor Pockmarks in Spatio-Temporal Distribution and Classification

  • Review
  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

Seafloor pockmarks are important indicators of submarine methane seepages and slope instabilities. In order to promote the understanding of submarine pockmarks and their relationship with sediment instabilities and climate changes, here we summarize the research results of pockmarks in the spatio-temporal distributions and shaping factors. Most of pockmarks occur along active or passive continental margins during the last 25 kyr B.P.. Circular and ellipse are the most common forms of pockmarks, whereas pockmarks in a special crescent or elongated shape are indicators of slope instabilities, and ring-shape pockmarks are endemic to the gas hydrate zones. Further researches should be focused on the trigger mechanism of climate changes based on the pockmarks in the high latitudes formed during the deglaciation periods, and the role of gas hydrates in the seafloor evolution should be elucidated. In addition, the feature of pockmarks at their early stage (e.g., developing gas chimneys and gas driving sedimentary doming) and the relations between pockmarks and mass movements, mud diapirs could be further studied to clarify the influences of rapid methane release from submarine sediments on the atmospheric carbon contents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ambrose, W. G., Panieri, G., Schneider, A., Plaza-Faverola, A., Carroll, M. L., Åström, E. K. L., Locke, W. L., and Carroll, J., 2015. Bivalve shell horizons in seafloor pockmarks of the last glacial-interglacial transition: A thousand years of methane emissions in the Arctic Ocean. Geochemistry, Geophysics, Geosystems, 16: 4108–4129, DOI: https://doi.org/10.1002/2015GC005980.

    Google Scholar 

  • Andresen, K. J., Huuse, M., and Clausen, O. R., 2008. Morphology and distribution of Oligocene and Miocene pockmarks in the Danish North Sea - Implications for bottom current activity and fluid migration. Basin Research, 20: 445–466.

    Google Scholar 

  • Andrews, B. D., Brothers, L. L., and Barnhardt, W. A., 2010. Automated feature extraction and spatial organization of seafloor pockmarks, Belfast Bay, Maine, USA. Geomorphology, 124: 55–64, DOI: https://doi.org/10.1016/j.geomorph.2010.08.009.

    Google Scholar 

  • Bayon, G., Gideon, M., Etoubleau, H., Caprais, J., and Sultan, N., 2015. U-Th isotope constraints on gas hydrate and pockmark dynamics at the Niger Delta margin. Marine Geology, 370: 87–98.

    Google Scholar 

  • Baltzer, A., Ehrhold, A., Rigolet, C., Souron, A., Cordier, C., Clouet, H., and Dubois, S. F., 2014. Geophysical exploration of an active pockmark field in the Bay of Concarneau, southern Brittany, and implications for resident suspension feeders. Geo-Marine Letters, 34: 215–230.

    Google Scholar 

  • Brothers, L. L., Kelley, J. T., Belknap, D. F., Barnhardt, W. A., Andrews, B. D., and Maynard, M. L., 2011. More than a century of bathymetric observations and present-day shallow sediment characterization in Belfast Bay, Maine, USA: Implications for pockmark field longevity. Geo-Marine Letters, 31: 237–248.

    Google Scholar 

  • Cathles, L. M., Su, Z., and Chen, D., 2010. The physics of gas chimney and pockmark formation, with implications for assessment of seafloor hazards and gas sequestration. Marine and Petroleum Geology, 27: 82–91.

    Google Scholar 

  • Chand, S., Cremiere, A., Lepland, A., Thorsnes, T., Brunstad, H., and Stoddart, D., 2017. Long-term fluid expulsion revealed by carbonate crusts and pockmarks connected to subsurface gas anomalies and palaeo-channels in the central North Sea. Geo- Marine Letters, 37: 215–227.

    Google Scholar 

  • Chen, J., Song, H., Guan, Y., Pinheiro, L. M., and Geng, M., 2018. Geological and oceanographic controls on seabed fluid escape structures in the northern Zhongjiannan Basin, South China Sea. Journal of Asian Earth Science, 168: 38–47.

    Google Scholar 

  • Chen, J., Song, H., Guan, Y., Yang, S., Pinheiro, L. M., Bai, Y., Liu, B., and Geng, M., 2015. Morphologies, classification and genesis of pockmarks, mud volcanoes and associated fluid escape features in the northern Zhongjiannan Basin, South China Sea. Deep Sea Research, Part II, Tropical Studies in Oceanography, 122: 106–117.

    Google Scholar 

  • Chen, S. C., Hsu, S. K., Tsai, C. H., Ku, C. Y., Yeh, Y. C., and Wang, Y., 2010. Gas seepage, pockmarks and mud volcanoes in the near shore of SW Taiwan. Marine Geophysical Researches, 31: 133–147, DOI: https://doi.org/10.1007/s11001-010-9097-6.

    Google Scholar 

  • Christodoulou, D., Papatheodorou, G., Ferentinos, G., and Masson, M., 2003. Active seepage in two contrasting pockmark fields in the Patras and Corinth Gulfs, Greece. Geo-Marine Letters, 23: 194–199, DOI: https://doi.org/10.1007/s00367-003-0151-0.

    Google Scholar 

  • Çifçi, G., Dondurur, D., and Ergün, M., 2003. Deep and shallow structures of large pockmarks in the Turkish shelf, Eastern Black Sea. Geo-Marine Letters, 23: 311–322.

    Google Scholar 

  • Crémière, A., Lepland, A., Chand, S., Sahy, D., Condon, D. J., Noble, S. R., Martma, T., Thorsnes, T., Sauer, S., and Brunstad, H., 2016. Timescales of methane seepage on the Norwegian margin following collapse of the Scandinavian Ice Sheet. Nature Communication, 7: 11509, DOI: https://doi.org/10.1038/ncomms11509.

    Google Scholar 

  • Dalla Valle, G., and Gamberi, F., 2011. Pockmarks and seafloor instability in the Olbia continental slope (northeastern Sardinian margin, Tyrrhenian Sea). Marine Geophysical Research, 32: 193–205, DOI: https://doi.org/10.1007/s11001-011-9133-1.

    Google Scholar 

  • Dandapath, S., Chakraborty, B., Karisiddaiah, S. M., Menezes, A., Ranade, G., Fernandes, W., Naik, D. K., and Prudhvi Raju, K. N., 2010. Morphology of pockmarks along the western continental margin of India: Employing multibeam bathymetry and backscatter data. Marine and Petroleum Geology, 27: 2107–2117, DOI: https://doi.org/10.1016/j.marpetgeo.2010.09.005.

    Google Scholar 

  • Dandapath, S., Chakraborty, B., Maslov, N., Karisiddaiah, S. M., Ghosh, D., Fernandes, W., and Menezes, A., 2012. Characterization of seafloor pockmark seepage of hydrocarbons employing fractal: A case study from the western continental margin of India. Marine and Petroleum Geology, 29: 115–128.

    Google Scholar 

  • de Mahiques, M. M., Schattner, U., Lazar, M., Sumida, P. Y. G., and de Souza, L. A. P., 2017. An extensive pockmark field on the upper Atlantic margin of Southeast Brazil: Spatial analysis and its relationship with salt diapirism. Heliyon, 3: e00257, DOI: https://doi.org/10.1016/j.heliyon.2017.e00257.

    Google Scholar 

  • de Prunelé, A., Ruffine, L., Riboulot, V., Peters, C. A., Croguennec, C., Guyader, V., Pape, T., Bollinger, C., Bayon, G., Caprais, J. C., Germain, Y., Donval, J. P., Marsset, T., Bohrmann, G., Géli, L., Rabiu, A., Lescanne, M., Cauquil, E., and Sultan, N., 2017. Focused hydrocarbon-migration in shallow sediments of a pockmark cluster in the Niger Delta (off Nigeria). Geochemistry, Geophysics, Geosystems, 18: 93–112.

    Google Scholar 

  • Di, P., Huang, H., Huang, B., He, J., and Chen, D., 2012. Seabed pockmark formation associated with mud diapir development and fluid activities in the Yinggehai Basin of the South China Sea. Journal of Tropical Oceanography, 31 (5): 26–36 (in Chinese with English abstract).

    Google Scholar 

  • Dimitrov, L., and Woodside, J., 2003. Deep sea pockmark environments in the eastern Mediterranean. Marine Geology, 195 (1-4): 263–276.

    Google Scholar 

  • Duarte, J. C., Terrinha, P., Rosas, F. M., Valadares, V., Pinheiro, L. M., Matias, L., Magalhães, V., and Roque, C., 2010. Crescent- shaped morphotectonic features in the Gulf of Cadiz (offshore SW Iberia). Marine Geology, 271: 236–249.

    Google Scholar 

  • Eichhubl, P., Greene, H. G., and Maher, N., 2002. Physiography of an active transpressive margin basin: High-resolution bathymetry of the Santa Barbara Basin, Southern California continental borderland. Marine Geology, 184: 95–120.

    Google Scholar 

  • Fandel, C. L., Lippmann, T. C., Foster, D. L., and Brothers, L. L., 2016a. Observations of pockmark flow structure in Belfast Bay, Maine, Part 2: Evidence for cavity flow. Geo-Marine Letters, 37 (1): 1–8.

    Google Scholar 

  • Fandel, C. L., Lippmann, T. C., Irish, J. D., and Brothers, L. L., 2016b. Observations of pockmark flow structure in Belfast Bay, Maine, Part 1: Current-induced mixing. Geo-Marine Letters, 37 (1): 1–14, DOI: https://doi.org/10.1007/s00367-016-0472-4.

    Google Scholar 

  • Fandel, C. L., Lippmann, T. C., Foster, D. L., and Brothers, L. L., 2017. Observations of pockmark flow structure in Belfast Bay, Maine, Part 3: Implications for sediment transport. Geo- Marine Letters, 37 (1): 23–34.

    Google Scholar 

  • Feldens, P., Schmidt, M., Mücke, I., Augustin, N., Al-Farawati, R., Orif, M., and Faber, E., 2016. Expelled subsalt fluids form a pockmark field in the eastern Red Sea. Geo-Marine Letters, 36: 339–352, DOI: https://doi.org/10.1007/s00367-016-0451-9.

    Google Scholar 

  • Gamberi, F., and Rovere, M., 2010. Mud diapirs, mud volcanoes and fluid flow in the rear of the Calabrian Arc Orogenic Wedge (southeastern Tyrrhenian Sea). Basin Research, 22: 452–464, DOI: https://doi.org/10.1111/j.1365-2117.2010.00473.x.

    Google Scholar 

  • Gay, A., Lopez, M., Cochonat, P., Levaché, D., Sermondadaz, G., and Seranne, M., 2006a. Evidences of early to late fluid migration from an upper Miocene turbiditic channel revealed by 3D seismic coupled to geochemical sampling within seafloor pockmarks, Lower Congo Basin. Marine and Petroleum Geology, 23: 387–399.

    Google Scholar 

  • Gay, A., Lopez, M., Cochonat, P., Séranne, M., Levaché, D., and Sermondadaz, G., 2006b. Isolated seafloor pockmarks linked to BSRs, fluid chimneys, polygonal faults and stacked Oligocene- Miocene turbiditic palaeochannels in the Lower Congo Basin. Marine Geology, 226: 25–40.

    Google Scholar 

  • Gay, A., Lopez, M., Cochonat, P., Sultan, N., Cauquil, E., and Brigaud, F., 2003. Sinuous pockmark belt as indicator of a shallow buried turbiditic channel on the lower slope of the Congo Basin, West African margin. Geological Society, 216: 173–190, DOI: https://doi.org/10.1144/gsl.sp.2003.216.01.12.

    Google Scholar 

  • Gay, A., Lopez, M., Ondreas, H., Charlou, J. L., and Sermondadaz, G., Cochonat, P., 2006c. Seafloor facies related to upward methane flux within a giant pockmark of the Lower Congo Basin. Marine Geology, 226: 81–95.

    Google Scholar 

  • Gay, A., Takano, Y., Gilhooly, W. P., Berndt, C., Heeschen, K., Suzuki, N., Saegusa, S., Nakagawa, F., Tsunogai, U., Jiang, S. Y., and Lopez, M., 2011. Geophysical and geochemical evidence of large scale fluid flow within shallow sediments in the eastern Gulf of Mexico, offshore Louisiana. Geofluids, 11: 34–47, DOI: https://doi.org/10.1111/j.1468-8123.2010.00304.x.

    Google Scholar 

  • Goswami, B. K., Weitemeyer, K. A., Bünz, S., Timothy, A., Westbrook, G. K., Ker, S., and Sinha, M. C., 2017. Variations in pockmark composition at the Vestnesa Ridge: Insights from marine controlled source electromagnetic and seismic data. Geochemistry, Geophysics, Geosystems, 18 (3): 1111–1125.

    Google Scholar 

  • Hammer, Ø., Webb, K. E., and Depreiter, D., 2009. Numerical simulation of upwelling currents in pockmarks, and data from the Inner Oslofjord, Norway. Geo-Marine Letters, 29: 269–275, DOI: https://doi.org/10.1007/s00367-009-0140-z.

    Google Scholar 

  • Hasiotis, T., Papatheodorou, G., and Ferentinos, G., 2002. A string of large and deep gas-induced depressions (pockmarks) offshore Killini Peninsula, western Greece. Geo-Marine Letters, 22: 142–149, DOI: https://doi.org/10.1007/s00367-002-0106-x.

    Google Scholar 

  • He, J., Zhang, W., and Lu, Z., 2017. Seepage system of oil-gas and its exploration in Yinggehai Basin located at northwest of South China Sea. Journal of Natural Gas Geoscience, 2 (1): 29–41, DOI: https://doi.org/10.1016/j.jnggs.2017.01.001.

    Google Scholar 

  • Hill, J. C., Driscoll, N. W., Weissel, J. K., and Goff, J. A., 2004. Large-scale elongated gas blowouts along the U.S. Atlantic margin. Journal of Geophysical Research: Solid Earth, 109: 1–14, DOI: https://doi.org/10.1029/2004JB002969.

    Google Scholar 

  • Hill, T. M., Paull, C. K., and Critser, R. B., 2012. Glacial and deglacial seafloor methane emissions from pockmarks on the northern flank of the Storegga Slide complex. Geo-Marine Letters, 32: 73–84, DOI: https://doi.org/10.1007/s00367-011-0258-7.

    Google Scholar 

  • Hjelstuen, B. O., Haflidason, H., Sejrup, H. P., and Nygård, A., 2010. Sedimentary and structural control on pockmark development- evidence from the Nyegga pockmark field, NW European margin. Geo-Marine Letters, 30: 221–230.

    Google Scholar 

  • Hovland, M., Heggland, R., de Vries, M. H., and Tjelta, T. I., 2010. Unit-pockmarks and their potential significance for predicting fluid flow. Marine and Petroleum Geology, 27: 1190–1199, DOI: https://doi.org/10.1016/j.marpetgeo.2010.02.005.

    Google Scholar 

  • Hovland, M., Jensen, S., and Indreiten, T., 2012. Unit pockmarks associated with Lophelia coral reefs off mid-Norway: More evidence of control by ‘fertilizing’ bottom currents. Geo-Marine Letters, 32: 545–554.

    Google Scholar 

  • Hustoft, S., Bünz, S., and Mienert, J., 2010. Three-dimensional seismic analysis of the morphology and spatial distribution of chimneys beneath the Nyegga pockmark field, offshore mid- Norway. Basin Research, 22: 465–480.

    Google Scholar 

  • Hustoft, S., Dugan, B., and Mienert, J., 2009. Effects of rapid sedimentation on developing the Nyegga pockmark field: Constraints from hydrological modeling and 3-D seismic data, offshore mid-Norway. Geochemistry, Geophysics, Geosystems, 10 (6): Q06012, DOI: https://doi.org/10.1029/2009GC002409.

    Google Scholar 

  • Iglesias, J., Ercilla, G., García-Gil, S., and Judd, A. G., 2010. Pockforms: An evaluation of pockmark-like seabed features on the Landes Plateau, Bay of Biscay. Geo-Marine Letters, 30: 207–219, DOI: https://doi.org/10.1007/s00367-009-0182-2.

    Google Scholar 

  • Ingrassia, M., Martorelli, E., Bosman, A., Macelloni, L., Sposato, A., and Chiocci, F. L., 2015. The zannone giant pockmark: First evidence of a giant complex seeping structure in shallowwater, central Mediterranean Sea, Italy. Marine Geology, 363: 38–51, DOI: https://doi.org/10.1016/j.margeo.2015.02.005.

    Google Scholar 

  • Jeong, K. S., Cho, J. H., Kim, S. R., Hyun, S., and Tsunogai, U., 2004. Geophysical and geochemical observations on actively seeping hydrocarbon gases on the south-eastern Yellow Sea continental shelf. Geo-Marine Letters, 24: 53–62.

    Google Scholar 

  • Karstens, J., Haflidason, H., Becker, L. W. M., Berndt, C., Rupke, L., Planke, S., Liebetrau, V., Schmidt, M., and Mienert, J., 2018. Glacigenic sedimentation pulses triggered post-glacial gas hydrate dissociation. Nature Communication, 9: 635.

    Google Scholar 

  • King, L. H., and MacLean, B., 1970. Pockmarks on the Scotian Shelf. Geological Society of America Bulletin, 81: 3141–3148, DOI: https://doi.org/10.1130/0016-7606(1970)81[3141:POTSS]2.0.CO;2.

    Google Scholar 

  • Kluesner, J. W., Silver, E. A., Bangs, N. L., McIntosh, K. D., Gibson, J., Orange, D., Ranero, C. R., and Von Huene, R., 2013. High density of structurally controlled, shallow to deep water fluid seep indicators imaged offshore Costa Rica. Geochemistry, Geophysics, Geosystems, 14: 519–539.

    Google Scholar 

  • Koch, S., Berndt, C., Bialas, J., Haeckel, M., Crutchley, G., Papenberg, C., Klaeschen, D., and Greinert, J., 2015. Gas-controlled seafloor doming. Geology, 43 (7): 571–574.

    Google Scholar 

  • Kopf, A. J., 2002. Significance of mud volcanism. Reviews of Geophysics, 40 (2): 1005, DOI: https://doi.org/10.1029/2000RG000093.

    Google Scholar 

  • Lastras, G., Canals, M., Urgeles, R., Hughes-Clarke, J. E., and Acosta, J., 2004. Shallow slides and pockmark swarms in the Eivissa Channel, western Mediterranean Sea. Sedimentology, 51: 837–850, DOI: https://doi.org/10.1111/j.1365-3091.2004.00654.x.

    Google Scholar 

  • León, R., Somoza, L., Medialdea, T., González, F. J., Gimenez-Moreno, C. J., and Pérez-López, R., 2014. Pockmarks on either side of the strait of Gibraltar: Formation from overpressured shallow contourite gas reservoirs and internal wave action during the last glacial sea-level lowstand? Geo-Marine Letters, 34: 131–151, DOI: https://doi.org/10.1007/s00367-014-0358-2.

    Google Scholar 

  • León, R., Somoza, L., Medialdea, T., Hernández-Molina, F. J., Vázquez, J. T., Díaz-del-Rio, V., and González, F. J., 2010. Pockmarks, collapses and blind valleys in the Gulf of Cádiz. Geo-Marine Letters, 30 (3-4): 231–247.

    Google Scholar 

  • Li, J., Wu, S., Hu, G., and Zhang, J., 2016. The characteristics and distribution pattern of seafloor sinuous pockmark train in the Niger Delta Basin, West Africa. Acta Geologica Sinica, 90 (3): 1057–1058.

    Google Scholar 

  • Li, L., Pei, D., Du, P., Yi, R., Zheng, B., and Wang, M., 2013. Architecture, character, evolution and genesis of seabed pockmarks: A case study to the continental slope in Rio Muni Basin, West Africa. Marine Origin Petroleum Geology, 18: 53–58.

    Google Scholar 

  • Luo, M., Chen, L., Wang, S., Yan, W., Wang, H., and Chen, D., 2013. Pockmark activity inferred from pore water geochemistry in shallow sediments of the pockmark field in southwestern Xisha uplift, northwestern South China Sea. Marine and Petroleum Geology, 48: 247–259.

    Google Scholar 

  • Maia, R. A., Cartwright, J., and Andersen, E., 2016. Shallow plumbing systems inferred from spatial analysis of pockmark arrays. Marine and Petroleum Geology, 77: 865–881.

    Google Scholar 

  • Marinaro, G., Etiope, G., Bue, N. L., Favali, P., Papatheodorou, G., Christodoulou, D., Furlan, F., Gasparoni, F., Ferentinos, G., Masson, M., and Rolin, J. F., 2006. Monitoring of a methaneseeping pockmark by cabled benthic observatory (Patras Gulf, Greece). Geo-Marine Letters, 26: 297–302.

    Google Scholar 

  • Masoumi, S., Reuning, L., Back, S., Sandrin, A., and Kukla, P. A., 2014. Buried pockmarks on the top chalk surface of the Danish North Sea and their potential significance for interpreting palaeocirculation patterns. Internation Journal of Earth Science, 103: 563–578, DOI: https://doi.org/10.1007/s00531-013-0977-2.

    Google Scholar 

  • Mau, S., Gentz, T., Körber, J. H., Torres, M., Römer, M., Sahling, H., Wintersteller, P., Martinez, R., Schlüter, M., and Helmke, E., 2014. Seasonal methane accumulation and release from a gas emission site in the central North Sea. Biogeosciences Discussions, 11: 5261–5276.

    Google Scholar 

  • Mazzini, A., Svensen, H. H., Forsberg, C. F., Linge, H., Lauritzen, S. E., Haflidason, H., Hammer, Ø., Planke, S., and Tjelta, T. I., 2017. A climatic trigger for the giant troll pockmark field in the northern North Sea. Earth and Planetary Science Letters, 464: 24–34, DOI: https://doi.org/10.1016/j.epsl.2017.02.014.

    Google Scholar 

  • Mazzini, A., Svensen, H. H., Planke, S., Forsberg, C. F., and Tjelta, T. I., 2016. Pockmarks and methanogenic carbonates above the giant Troll gas field in the Norwegian North Sea. Marine Geology, 373: 26–38.

    Google Scholar 

  • McAdoo, B. G., Orange, D. L., Silver, E. A., McIntosh, K., Abbott, L., Galewsky, J., Kahn, L., and Protti, M., 1996. Seafloor structural observations, Costa Rica accretionary prism. Geophysical Research Letters, 23: 883–886.

    Google Scholar 

  • Miller, D. J., Ketzer, J. M., Viana, A. R., Kowsmann, R. O., Freire, A. F. M., Oreiro, S. G., Augustin, A. H., Lourega, R. V., Rodrigues, L. F., Heemann, R., Preissler, A. G., Machado, C. X., and Sbrissa, G. F., 2015. Natural gas hydrates in the Rio Grande Cone (Brazil): A new province in the western South Atlantic. Marine and Petroleum Geology, 67: 187–196.

    Google Scholar 

  • Moss, J. L., Cartwright, J., and Moore, R., 2012. Evidence for fluid migration following pockmark formation: Examples from the Nile deep sea fan. Marine Geology, 303-306: 1–13.

    Google Scholar 

  • Ondréas, H., Olu, K., Fouquet, Y., Charlou, J. L., Gay, A., Dennielou, B., Donval, J. P., Fifis, A., Nadalig, T., Cochonat, P., Cauquil, E., Bourillet, J. F., Moigne, M. L., and Sibuet, M., 2005. ROV study of a giant pockmark on the Gabon continental margin. Geo-Marine Letters, 25: 281–292.

    Google Scholar 

  • Pau, M., Gisler, G., and Hammer, Ø., 2014. Experimental investigation of the hydrodynamics in pockmarks using particle tracking velocimetry. Geo-Marine Letters, 34: 11–19.

    Google Scholar 

  • Paull, C. K., Ussler, W., Holbrook, W. S., Hill, T. M., Keaten, R., Mienert, J., Haflidason, H., Johnson, J. E., Winters, W. J., and Lorenson, T. D., 2008. Origin of pockmarks and chimney structures on the flanks of the Storegga Slide, offshore Norway. Geo-Marine Letters, 28: 43–51.

    Google Scholar 

  • Pilcher, R., and Argent, J., 2007. Mega-pockmarks and linear pockmark trains on the West African continental margin. Marine Geology, 244: 15–32.

    Google Scholar 

  • Pinet, N., Duchesne, M., and Lavoie, D., 2010. Linking a linear pockmark train with a buried Palaeozoic structure: A case study from the St. Lawrence Estuary. Geo-Marine Letters, 30: 517–522, DOI: https://doi.org/10.1007/s00367-009-0179-x.

    Google Scholar 

  • Plaza-Faverola, A., Bünz, S., and Mienert, J., 2011. Repeated fluid expulsion through sub-seabed chimneys offshore Norway in response to glacial cycles. Earth and Planetary Science Letters, 305: 297–308, DOI: https://doi.org/10.1016/j.epsl.2011.03.001.

    Google Scholar 

  • Prouty, N. G., Sahy, D., Ruppel, C. D., Roark, E. B., Condon, D., Brooke, S., Ross, S. W., and Demopoulos, A. W. J., 2016. Insights into methane dynamics from analysis of authigenic carbonates and chemosynthetic mussels at newly-discovered Atlantic Margin seeps. Earth and Planetary Science Letters, 449: 332–344, DOI: https://doi.org/10.1016/j.epsl.2016.05.023.

    Google Scholar 

  • Riboulot, V., Cattaneo, A., Sultan, N., Garziglia, S., Ker, S., Imbert, P., and Voisset, M., 2013. Sea-level change and free gas occurrence influencing a submarine landslide and pockmark formation and distribution in deepwater Nigeria. Earth and Planetary Science Letters, 375: 78–91.

    Google Scholar 

  • Riboulot, V., Sultan, N., Imbert, P., and Ker, S., 2016. Initiation of gas-hydrate pockmark in deep-water Nigeria: Geo-mechanical analysis and modelling. Earth and Planetary Science Letters, 434: 252–263, DOI: https://doi.org/10.1016/j.epsl.2015.11.047.

    Google Scholar 

  • Roy, S., Hovland, M., and Braathen, A., 2016. Evidence of fluid seepage in Grønfjorden, Spitsbergen: Implications from an integrated acoustic study of seafloor morphology, marine sediments and tectonics. Marine Geology, 380: 67–78.

    Google Scholar 

  • Schattner, U., Lazar, M., Souza, L. A. P., ten Brink, U., and Mahiques, M. M., 2016. Pockmark asymmetry and seafloor currents in the Santos Basin offshore Brazil. Geo-Marine Letters, 36: 457–464.

    Google Scholar 

  • Sultan, N., Bohrmann, G., Ruffine, L., Pape, T., Riboulot, V., Colliat, J. L., de Prunele, A., Dennielou, B., Garziglia, S., Himmler, T., Marsset, T., Peters, C. A., Rabiu, A., and Wei, J., 2014. Pockmark formation and evolution in deep water Nigeria: Rapid hydrate growth versus slow hydrate dissolution. Journal of Geophysical Research: Solid Earth, 119: 2679–2694.

    Google Scholar 

  • Sumida, P. Y. G., Yoshinaga, M. Y., Madureira, L. A. S. P., and Hovland, M., 2004. Seabed pockmarks associated with deepwater corals off SE Brazilian continental slope, Santos Basin. Marine Geology, 207: 159–167.

    Google Scholar 

  • Sun, Q., Wu, S., Hovland, M., Luo, P., Lu, Y., and Qu, T., 2011. The morphologies and genesis of mega-pockmarks near the Xisha uplift, South China Sea. Marine and Petroleum Geology, 28: 1146–1156, DOI: https://doi.org/10.1016/j.marpetgeo.2011.03.003.

    Google Scholar 

  • Szpak, M. T., Monteys, X., O’Reilly, S., Simpson, A. J., Garcia, X., Evans, R. L., Allen, C. C. R., McNally, D. J., Courtier-Murias, D., and Kelleher, B. P., 2012. Geophysical and geochemical survey of a large marine pockmark on the Malin Shelf, Ireland. Geochemistry, Geophysics, Geosystems, 13: 1–18.

    Google Scholar 

  • Sztybor, K., and Rasmussen, T. L., 2016. Diagenetic disturbances of marine sedimentary records from methane-influenced environments in the Fram Strait as indications of variation in seep intensity during the last 35000 years. Boreas, 46: 212–228.

    Google Scholar 

  • Tasianas, A., Bünz, S., Bellwald, B., Hammer, O., Planke, S., Lebedeva-Icanova, N., and Krassakis, P., 2018. High-resolution 3D seismic study of pockmarks and shallow fluid flow systems at the Snøhvit hydrocarbon field in the SW Barents Sea. Marine Geology, 403: 247–261.

    Google Scholar 

  • Taviani, M., Angeletti, L., Ceregato, A., Foglini, F., Froglia, C., and Trincardi, F., 2013. The Gela Basin pockmark field in the Strait of Sicily (Mediterranean Sea): Chemosymbiotic faunal and carbonate signatures of postglacial to modern cold seepage. Biogeosciences, 10: 4653–4671.

    Google Scholar 

  • Verdicchio, G., and Trincardi, F., 2006. Short-distance variability in slope bed-forms along the southwestern Adriatic Margin (central Mediterranean). Marine Geology, 234: 271–292.

    Google Scholar 

  • Von Rad, U., Berner, U., Delisle, G., Doose-Rolinski, H., Fechner, N., and Linke, P., 2000. Gas and fluid venting at the Makran accretionary wedge off Pakistan. Geo-Marine Letters, 20 (1): 10–19.

    Google Scholar 

  • Wang, H., Liu, H., Zhang, M., and Wang, X., 2016. Wave-induced seepage and its possible contribution to the formation of pockmarks in the Huanghe (Yellow) River Delta. Chinese Journal of Oceanology and Limnology, 34: 200–211.

    Google Scholar 

  • Wei, J., Pape, T., Sultan, N., Colliat, J. L., Himmler, T., Ruffine, L., de Prunelé, A., Dennielou, B., Garziglia, S., Marsset, T., Peters, C. A., Rabiu, A., and Bohrmann, G., 2015. Gas hydrate distributions in sediments of pockmarks from the Nigerian margin - Results and interpretation from shallow drilling. Marine and Petroleum Geology, 59: 359–370.

    Google Scholar 

  • Wenau, S., Spieß, V., Pape, T., and Fekete, N., 2017. Controlling mechanisms of giant deep water pockmarks in the Lower Congo Basin. Marine and Petroleum Geology, 83: 140–157.

    Google Scholar 

  • Xu, C., Greinert, J., Haeckel, M., Bialas, J., Dimitrov, L., and Zhao, G., 2018. The character and formation of elongated depressions on the upper Bulgarian Slope. Journal of Ocean University of China, 17: 555–562.

    Google Scholar 

  • Zeppilli, D., Canals, M., and Danovaro, R., 2012. Pockmarks enhance deep-sea benthic biodiversity: A case study in the western Mediterranean Sea. Diversity and Distributions, 18: 832–846.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 41606044, 41906068, 91 858208), the National Key Research and Development Program (No. 2018YFC031000303), the Taishan Scholar Special Experts Project (No. ts201712079) and the Marine Geological Survey Program of China Geological Survey (No. DD20190819). We also appreciate the two anonymous reviewers for their valuable suggestions

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junhui Xing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, C., Xu, G., Xing, J. et al. Research Progress of Seafloor Pockmarks in Spatio-Temporal Distribution and Classification. J. Ocean Univ. China 19, 69–80 (2020). https://doi.org/10.1007/s11802-020-3878-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-020-3878-6

Key words

Navigation