Skip to main content

Advertisement

Log in

Inferring Behavior of Chinese Krill Fishing Vessel Using a Simple Walk Model

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

Each type of fishery has its own characteristic behavior, and understanding this condition is an important part of developing and managing fishing operations comprehensively. Based on the random walk model, the relationship between distance and frequency distribution of adjacent fishing positions was analyzed by the Commission for Conservation of Antarctic Marine Living Resources (CCAMLR) Subareas 48.1, 48.2, and 48.3. The frequency of distances between consecutive hauls demonstrated a heavy-tailed distribution, which could be used to estimate the value of parameter μ in the power function F(l) ∼ lμ of a random walk model to determine the type of random walk patterns that characterize Chinese krill fishery. Results indicated that the fishing pattern of the Chinese krill fishery is consistent with the Lévy random walk model, with which the step-length is applied to analyze the walking pattern. When a defined walk in a space of dimension is greater than one, the steps made are in isotropic random directions. Furthermore, a strong and positive correlation between fishing behavior (using the parameter μ as an indicator) and catch per unit effort of the Chinese krill fishery was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atkinson, R. P. D., Rhodes, C. J., Macdonald, D. W., and Anderson, R. M., 2002. Scale-free dynamics in the movement patterns of jackals. Oikos, 98 (1): 134–140.

    Article  Google Scholar 

  • Bartumeus, F., Peters, F., Pueyo, S., Marrasé, C., and Catalan, J., 2003. Helical Lévy walks: Adjusting searching statistics to resource availability in microzooplankton. Proceedings of the National Academy of Sciences of United States of America, 100 (22): 12771–12775.

    Article  Google Scholar 

  • Ben-Avraham, D., and Havlin, S., 2000. Diffusion and reactions in fractals and disordered systems. Cambridge University Press, Cambridge, 332pp.

    Book  Google Scholar 

  • Bertrand, A., Segura, M., Gutiérrez, M., and Vásquez, L., 2004. From small-scale habitat loopholes to decadal cycles: A habitat-based hypothesis explaining fluctuation in pelagic fish populations off Peru. Fish and Fisheries, 5 (4): 296–316.

    Article  Google Scholar 

  • Bertrand, S., Bertrand, A., Guevara-Carrasco, R., and Gerlotto, F., 2007. Scale-invariant movements of fishermen: The same foraging strategy as natural predators. Ecological Applications, 17 (2): 331–337.

    Article  Google Scholar 

  • Bertrand, S., Burgos, J. M., Gerlotto, F., and Atiquipa, J., 2005. Lévy trajectories of fishers as an indicator of pelagic fish spatial distribution: The case of the Peruvian anchovy (Engraulis ringens) fishery. ICES Journal of Marine Science, 62: 477–482.

    Article  Google Scholar 

  • Bovet, P., and Benhamou, S., 1988. Spatial analysis of animals’ movements using a correlated random walk model. Journal of Theoretical Biology, 131 (4): 419–433.

    Article  Google Scholar 

  • Boyd, I. L., 1996. Temporal scales of foraging in a marine predator. Ecology, 77 (2): 426–434.

    Article  Google Scholar 

  • Brown, C. T., Liebovitch, L. S., and Glendon, R., 2007. Lévy flights in Dobe Ju/’hoansi foraging patterns. Human Ecology, 35 (1): 129–138.

    Article  Google Scholar 

  • Cole, B. J., 1995. Fractal time in animal behaviour: The movement activity of Drosophila. Animal Behaviour, 50 (5): 1317–1324.

    Article  Google Scholar 

  • Da Luz, M. G. E., Buldyrev, S. V., Havlin, S., Raposo, E. P., Stanley, H. E., and Viswanathan, G. M., 2001. Improvements in the statistical approach to random Lévy flight searches. Physica A: Statistical Mechanics and Its Applications, 295 (1): 89–92.

    Article  Google Scholar 

  • Edwards, A. M., Phillips, R. A., Watkins, N. W., Freeman, M. P., Murphy, E. J., Afanasyev, V., and Viswanathan, G. M., 2007. Revisiting Lévy flight search patterns of wandering albatrosses, bumblebees and deer. Nature, 449 (7165): 1044–1048.

    Article  Google Scholar 

  • Bardou, F., Bouchaud, J. P., Aspect, A., and Cohentannoudji, C., 2002. Lévy Statistics and Laser Cooling. Cambridge University Press, Cambridge, 417 (6891): 793–794.

    Google Scholar 

  • Gautestad, A. O., 2013. Animal space use: Distinguishing a two-level superposition of scale-specific walks from scale-free Lévy walk. Oikos, 122 (4): 612–620.

    Article  Google Scholar 

  • Green, R. F., 1987. Stochastic Models of Optimal Foraging. Foraging Behavior. Springer, Boston, 273–302.

    Book  Google Scholar 

  • Kawaguchi, S., and Candy, S. G., 2009. Quantifying movement behavior of vessels in the Antarctic krill fishery. CCAMLE Science, 16: 131–148.

    Google Scholar 

  • Klafter, J., White, B. S., and Levandowsky, M., 1990. Microzooplankton feeding behavior and the Lévy walk. In: Biological Motion. Springer, Berlin, 281–296.

    Chapter  Google Scholar 

  • Miller, D. G. M., and Hampton, I., 1989. Biology and ecology of the Antarctic krill (Euphausia superba Dana): A review. Antarctic Science, 1 (4): 166.

    Article  Google Scholar 

  • Nicol, S., and Foster, J., 2016. The fishery for Antarctic krill: Its current status and management regime. In: Biology and Ecology of Antarctic Krill. Springer, New York, 387–422.

    Chapter  Google Scholar 

  • Ott, J., Ramos Tombo, G. M., Schmid, B., Venanzi, L. M., Wang, G., and Ward, T. R., 1989. A versatile rhodium catalyst for acetalization reactions under mild conditions. Tetrahedron Letters, 30 (45): 6151–6154.

    Article  Google Scholar 

  • Raichlen, D. A., Wood, B. M., Gordon, A. D., Mabulla, A. Z., Marlowe, F. W., and Pontzer, H., 2014. Evidence of Lévy walk foraging patterns in human hunter-gatherers. Proceedings of the National Academy of Sciences of the United States of America, 111 (2): 728–733.

    Article  Google Scholar 

  • SC-CAMLR, 2018. Report of the thirty-seventh meeting of the Scientific Committee for the Conservation of Antarctic Marine Living Resources. Hobart, Australia.

  • Shlesinger, M. F., West, B. J., and Klafter, J., 1987. Lévy dynamics of enhanced diffusion: Application to turbulence. Physical Review Letters, 58 (11): 1100–1103.

    Article  Google Scholar 

  • Shlesinger, M. F., Zaslavsky, G. M., and Frisch, U., 1995. Lévy Flights and Related Topics in Physics. Proceedings of the international workshop held at Nice, France, 27–30 June 1994.

    Book  Google Scholar 

  • Turchin, P., and Yen, J., 1998. Quantitative analysis of movement: Measuring and modeling population redistribution in animals and plants. Quarterly Review of Biology, 74 (2): 535–550.

    Google Scholar 

  • Viswanathan, G. M., 1999. Optimizing the success of random searches. Nature, 401 (6756): 911–914.

    Article  Google Scholar 

  • Viswanathan, G. M., Afanasyev, V., Buldyrev, S. V., Havlin, S., Da Luz, M. G. E., Raposo, E. P., and Stanley, H. E., 2000. Lévy flights in random searches. Physica A: Statistical Mechanics and Its Applications, 282 (1): 1–12.

    Article  Google Scholar 

  • Viswanathan, G. M., Afanasyev, V., Buldyrev, S. V., Havlin, S., Da Luz, M. G. E., Raposo, E. P., and Stanley, H. E., 2001. Lévy flights search patterns of biological organisms. Physica A: Statistical Mechanics and Its Applications, 295 (1): 85–88.

    Article  Google Scholar 

  • Viswanathan, G. M., Afanasyev, V., Buldyrev, S. V., Murphy, E. J., Prince, P. A., and Stanley, H. E., 1996. Lévy flight search patterns of wandering albatrosses. Nature, 381 (6581): 413–415.

    Article  Google Scholar 

  • Viswanathan, G. M., Bartumeus, F., Buldyrev, S. V., Catalan, J., Fulco, U. L., Havlin, S., and Stanley, H. E., 2002. Lévy flight random searches in biological phenomena. Physica A: Statistical Mechanics and Its Applications, 314 (1): 208–213.

    Article  Google Scholar 

  • Viswanathan, G. M., Buldyrev, S. V., Havlin, S., Da Luz, M. G. E., Raposo, E. P., and Stanley, H. E., 1999. Optimizing the success of random searches. Nature, 401 (6756): 911–914.

    Article  Google Scholar 

  • Weeks, E. R., Urbach, J. S., and Swinney, H. L., 1996. Anomalous diffusion in asymmetric random walks with a quasigeostrophic flow example. Physica D: Nonlinear Phenomena, 97 (1): 291–310.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the captain and crew of Chinese krill trawlers and scientific observers onboard those vessels that collected the data. We are also grateful to Dr. Keith Reid from the Commission for the Conservation of Antarctic Marine Living Resources and Dr. So Kawaguchi from the Australian Antarctic Division for providing useful suggestions to improve the quality of this study. GPZ was sponsored partly by the National Key R&D Program of China (No. 2018YFC1406801), the National Natural Science Foundation of China (No. 41776185), and the Key Course Construction Program of the Shanghai Municipal Education Commission (Biological Oceanography) (No. A1-0201-00-1204).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoping Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Zhu, G. Inferring Behavior of Chinese Krill Fishing Vessel Using a Simple Walk Model. J. Ocean Univ. China 18, 939–946 (2019). https://doi.org/10.1007/s11802-019-3976-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-019-3976-5

Key words

Navigation