Skip to main content
Log in

Response of the Dominant Modes of Atmospheric Circulation in the Northern Hemisphere to a Projected Arctic Sea Ice Loss in 2007

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

This study revisits the Arctic sea ice extent (SIE) for the extended period of 1979–2015 based on satellite measurements and finds that the Arctic SIE experienced three different periods: a moderate sea ice decline period for 1979–1996, an accelerated sea ice decline period from 1997 to 2006, and large interannual variation period after 2007, when Arctic sea ice reached its tipping point reported by Livina and Lenton (2013). To address the response of atmospheric circulation to the lowest sea ice conditions with a large interannual variation, we investigated the dominant modes for large atmospheric circulation responses to the projected 2007 Arctic sea ice loss using an atmospheric general circulation model (ECHAM5). The response was obtained from two 50-yr simulations: one with a repeating seasonal cycle of specified sea ice concentration for the period of 1979–1996 and one with that of sea ice conditions in 2007. The results suggest more occurrences of a negative Arctic Oscillation (AO) response to the 2007 Arctic sea ice conditions, accompanied by an North Atlantic Oscillation (NAO)-type atmospheric circulation response under the largest sea ice loss, and more occurrences of the positive Arctic Dipole (AD) mode under the 2007 sea ice conditions, with an across-Arctic wave train pattern response to the largest sea ice loss in the Arctic. This study offers a new perspective for addressing the response of atmospheric circulation to sea ice changes after the Arctic reached the tipping point in 2007.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alenander, M. A., Bhatt, U. S., Wlash, J. E., Timlin, M. S., Miller, J. S., and Scott, J. D., 2004. The atmosphere response to realistic Arctic sea ice anomalies in an AGCM during winter. Journal of Climate, 17: 890–905.

    Article  Google Scholar 

  • Barnes, E. A., 2013. Revisiting the evidence linking Arctic amplification to extreme weather in midlatitudes. Geophysical Research Letters, 40: 4734–4739.

    Article  Google Scholar 

  • Bhatt, U. S., Alexander, M. A., Deser, C., Walsh, J. E., Miller, J. S., Timlin, M., Scott, J. D., and Tomas, R., 2008. The atmospheric response to realistic reduced summer Arctic sea ice anomalies. In: Arctic Sea Ice Decline: Observations, Projections, Mechanisms, and Implications. AGU, Washington, D. C., 91-110

    Google Scholar 

  • Cohen, J. L., Furtado, J. C., Barlow, M. A., Alexeev, V. A., and Cherry, J. E., 2012. Arctic warming, increasing snow cover and widespread boreal winter cooling. Environmental Research Letters, 7 (1): 014007.

    Article  Google Scholar 

  • Cohen, J. L., Screen, J. A., Furtado, J. C., Barlow, M., Whittleston, D., Coumou, D., Francis, J., Dethloff, K., Entekhabi, D., Overland, J., and Jones, J., 2014. Recent Arctic amplification and extreme mid-latitude weather. Nature Geoscience, 7: 627–637.

    Article  Google Scholar 

  • Comiso, J. C., and Nishio, F., 2008. Trends in the sea ice cover using enhanced and compatible AMSR-E, SSM/I, and SMMR data. Journal of Geophysical Research: Oceans, 113: C02S07.

    Google Scholar 

  • Comsio, J. C., Parkinson, C. L., Gersten, R., and Stock, L., 2008. Accelerated decline in the Arctic sea ice cover. Geophysical Research Letters, 35: L01703.

    Google Scholar 

  • Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J. J., Park, B}.

  • K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J. N., and Vitart, F., 2011. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137: 553–597.

    Article  Google Scholar 

  • Deser, C., and Teng, H., 2008. Evolution of Arctic sea ice concentration trends and the role of atmospheric circulation forcing, 1979–2007. Geophysical Research Letters, 35: L02504.

    Article  Google Scholar 

  • Deser, C., Magnusdottir, G., Saravanan, R., and Phillips, A., 2004. The effects of North Atlantic SST and sea ice anomalies on the winter circulation in CCM3. Part II: Direct and indirect components of the response. Journal of Climate, 17: 877–889.

    Article  Google Scholar 

  • Deser, C., Tomas, R., Alexander, M., and Lawrence, D., 2010. The seasonal atmospheric response to projected Arctic sea ice loss in the late Twenty-first century. Journal of Climate, 23: 333–351.

    Article  Google Scholar 

  • Gerdes, R., 2006. Atmospheric response to changes in Arctic sea ice thickness. Geophysical Research Letters, 33: L18709.

    Article  Google Scholar 

  • Honda, M., Inoue, J., and Yamane, S., 2009. Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters. Geophysical Research Letters, 36: L08707.

    Article  Google Scholar 

  • Kurtz, N., Markus, T., Farrell, S., Worthern, D., and Boisvert, L., 2011. Observations of recent Arctic sea ice volume loss and its impact on ocean-atmosphere energy exchange and ice production. Journal of Geophysical Research: Oceans, 116: C04015.

    Article  Google Scholar 

  • Kwok, R., Spreen, G., and Pang, S., 2013. Arctic sea ice circulation and drift speed: Decadal trends and ocean currents. Journal of Geophysical Research: Oceans, 118: 2408–2425.

    Google Scholar 

  • Kim, B., Son, S. W., Min, S. K., Jeong, J. H., Kim, S. J., Zhang, X., Shim, T., and Yoon, J. H., 2014. Weakening of the stratospheric polar vortex by Arctic sea-ice loss. Nature Communications, 5: 4646, DOI: 10.1038/ncomms5646.

    Article  Google Scholar 

  • L’Heureux, M. L., Kumar, A., Bell, G. D., Halpert, M. S., and Higgins, R. W., 2008. Role of the Pacific-North American (PNA) pattern in the 2007 Arctic sea ice decline. Geophysical Research Letters, 35: L20701.

    Article  Google Scholar 

  • Livina, V. N., and Lenton, T. M., 2013. A recent tipping point in the Arctic sea-ice cover: Abrupt and persistent increase in the seasonal cycle since 2007. The Cryosphere, 7: 275–286.

    Article  Google Scholar 

  • Liu, J., Curry, J., Wang, H., Song, M., and Horton, R., 2012. Impact of declining Arctic sea ice on winter snowfall. Proceedings of the National Academy of Sciences, 109: 4074–4079.

    Article  Google Scholar 

  • Nakamura, T., Yamazaki, K., Iwamoto, K., Honda, M., Miyoshi, Y., Ogawa, Y., and Ukita, J., 2015. A negative phase shift of the winter AO/NAO due to the recent Arctic sea-ice reduction in late autumn. Journal of Geophysical Research: Atmospheres, 120: 3209–3227.

    Google Scholar 

  • Maslanik, J., Drobot, S., Fowler, C., Emery, W., and Barry, R., 2007. On the Arctic climate paradox and the continuing role of atmospheric circulation in affecting sea ice conditions. Geophysical Research Letters, 34: L03711.

    Google Scholar 

  • Mori, M., Watanabe, M., Shigeo, H., Inoue, J., and Kimoto, M., 2014. Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades. Nature Geoscience, 7: 869–873.

    Article  Google Scholar 

  • Ogi, M., and Rigor, I. G., 2013. Trends in Arctic sea ice and the role of atmospheric circulation. Atmospheric Science Letters, 14: 97–101.

    Article  Google Scholar 

  • Ogi, M., and Yamazaki, K., 2010. Trends in the summer Northern Annual Mode and Arctic sea ice. Scientific Online Letters on Atmosphere, 6: 41–44.

    Google Scholar 

  • Ogi, M., Rigor, I. G., McPhee, M. G., and Wallace, J. M., 2008. Summer retreat of Arctic sea ice: Role of summer winds. Geophysical Research Letters, 35: L24701.

    Article  Google Scholar 

  • Overland, J. E., and Wang, M., 2010. Large-scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice. Tellus A, 62: 1–9.

    Article  Google Scholar 

  • Overland, J. E., Francis, J., Hall, R., Hanna, E., Kim, S., and Vihma, T., 2015. The melting Arctic and midlatitude weather patterns: Are they connected? Journal of Climate, 28: 7917–7932.

    Article  Google Scholar 

  • Overland, J. E., Wang, M., and Salo, S., 2008. The recent Arctic warm period. Tellus, 60: 589–597.

    Article  Google Scholar 

  • Peings, Y., and Magunsdottir, G., 2013. Response of the wintertime northern hemisphere atmospheric circulation to current and projected Arctic sea ice decline: A numerical study with CAM5. Journal of Climate, 27: 244–263.

    Article  Google Scholar 

  • Reyner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V., Rowell, D. P., Kent, E. C., and Kaplan, A., 2003. Global analysis of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. Journal of Geophysical Research: Atmospheres, 108: 4407.

    Article  Google Scholar 

  • Rigor, I. G., Wallace, J. M., and Colony, R. L., 2002. Response of sea ice to the Arctic Oscillation. Journal of Climate, 15: 2648–2663.

    Article  Google Scholar 

  • Rudels, B., and Quadfasel, D., 1991. Convection and deep water formation in the Arctic Ocean-Greenland Sea system. Journal of Marine Systems, 2: 435–450.

    Article  Google Scholar 

  • Screen, J., 2013. Influence of Arctic sea ice on European summer precipitation. Environmental Research Letters, 8: 044015.

    Article  Google Scholar 

  • Screen, J. A., and Simmonds, I., 2010. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464: 1334–1337.

    Article  Google Scholar 

  • Screen, J., Simmonds, I., Deser, C., and Tomas, R., 2012. The atmospheric response to three decades of observed Arctic sea ice loss. Journal of Climate, 26: 1230–1248.

    Article  Google Scholar 

  • Screen, J. A., Simmonds, I., Deser, C., and Tomas, R., 2013. The atmospheric response to three decades of observed Arctic sea ice loss. Journal of Climate, 26: 1230–1248.

    Article  Google Scholar 

  • Seierstad, I. A., and Bader, J., 2009. Impact of a projected future Arctic sea ice reduction on extratropical storminess and the NAO. Climate Dynamics, 33: 937–943.

    Article  Google Scholar 

  • Serreze, M. C., and Barry, R. G., 2011. Processes and impacts of Arctic amplification: A research synthesis. Global and Planetary Change, 77: 85–96.

    Article  Google Scholar 

  • Serreze, M. C., Holland, M. M., and Stroeve, J., 2007. Perspectives on the Arctic’s shrinking sea-ice cover. Science, 315: 1533–1536.

    Article  Google Scholar 

  • Sewall, J. O., 2005. Precipitation shifts over western North America as a result of declining Arctic sea ice cover, the coupled system response. Earth Interactions, 9 (26): 1.

    Article  Google Scholar 

  • Singarayer, J. S., Bamber, J. L., and Valdes, P. J., 2006. Twentyfirstcentury climate impacts from a declining Arctic sea ice cover. Journal of Climate, 19: 1109–1125.

    Article  Google Scholar 

  • Sun, L., Deser, C., and Tomas, R., 2015. Mechanisms of stratospheric and tropospheric circulation response to projected Arctic sea ice loss. Journal of Climate, 28: 7824–7845.

    Article  Google Scholar 

  • Thompson, D. W., and Wallace, J. M., 1998. The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophysical Research Letters, 25: 1297–1300.

    Article  Google Scholar 

  • Walsh, J. E., 2014. Intensified warming of the Arctic: Causes and impacts on middle latitudes. Global Planet Change, 117: 52–63.

    Article  Google Scholar 

  • Wang, J., and Ikeda, M., 2000. Arctic Oscillation and Arctic sea ice oscillation. Geophysical Research Letters, 17: 1287–1290.

    Article  Google Scholar 

  • Wang, J., Zhang, J., Watanabe, E., Ikeda, M., Mizobata, K., Walsh, J. E., Bai, X., and Wu, B., 2009. Is the dipole anomaly a major driver to record lows in Arctic summer sea ice extent? Geophysical Research Letters, 36: L05706.

    Google Scholar 

  • Watanabe, E., Wang, J., Sumi, A., and Hasumi, H., 2006. Arctic dipole anomaly and its contribution to sea ice export from the Arctic Ocean in the 20th century. Geophysical Research Letters, 33: L23703.

    Article  Google Scholar 

  • Wu, B., Wang, J., and Walsh, J. E., 2006. Dipole anomaly in the winter Arctic atmosphere and its association with Arctic sea ice motion. Journal of Climate, 19: 210–225.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Xu Zhang for conducting the ECHAM5 simulations. The figures were produced with the NCAR Command Language (NCL) software package. The work was supported by the Global Change Research Program of China (No. 2015CB953904), and the National Natural Science Foundation of China (Nos. 41575067, 41605037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, T., Huang, F. & Zhou, X. Response of the Dominant Modes of Atmospheric Circulation in the Northern Hemisphere to a Projected Arctic Sea Ice Loss in 2007. J. Ocean Univ. China 18, 589–595 (2019). https://doi.org/10.1007/s11802-019-3876-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-019-3876-8

Key words

Navigation