Skip to main content
Log in

Study on Al-Zn-In Alloy as Sacrificial Anodes in Seawater Environment

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

Electrochemical properties including conventional electrochemical properties: open circuit potential, polarization potential, electrochemical capacity, morphology of surface dissolution, and the initial polarization properties of Al-Zn-In-Mg-Ti and Al-Zn-In-Si sacrificial anodes are investigated in the sea. The curves of anode output current and work potential with time, the impact of area ratio of cathode to anode on anode output current is discussed, and the initial polarization properties are investigated with cyclic voltammetry (CV) finally. The results show that for the two anodes, the current efficiency got in the sea environment is higher than the data of the 4-day-accelerated test in laboratory and the corrosion morphology is more uniform in the sea. With the same exposed area, the current efficiency of Al-Zn-In-Mg-Ti anode is higher than that of Al-Zn-In-Si in the sea. For both anodes, the current efficiency becomes larger with the increase of the area ratio of cathode to anode. The two anodes can output larger current in strong polarization state. The situation is consistent with the results that small area anode released higher current in the sea trial. The difference rests with that Al-Zn-In-Mg-Ti anode output far greater current than that of the Al-Zn-In-Si under the same polarization potential. The initial polarization property of the Al-Zn-In-Mg-Ti anode is better than Al-Zn-In-Si anode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bessone, J. B., and Flamini, D. O., 2005. Comprehensive model for the activation mechanism of Al-Zn alloys produced by indium. Corrosion Science, 47: 95–105.

    Article  Google Scholar 

  • Chen, S., Hartt, W., and Wolfson, S., 2003. Deep water cathodic protection: Part 2 — Field deployment results. Corrosion, 59: 721–732.

    Article  Google Scholar 

  • Chen, X. W., 2011. Research on galvanic corrosion behaviour of ship typical materials. Ocean University of China.

    Google Scholar 

  • Deng, H. P., 1997. Te-Zr alloy high-performance aluminum matrix sacrificial anode test and explore. China Offshore Oil and Gas (Engineering), 9: 22–26.

    Google Scholar 

  • DNV-RP-B401-2011, Cathodic protection design 2011.

  • GB/T 17848-1999 Test methods for electrochemical properties of sacrificial anodes 1999.

  • Gou, Z. C., Song, Y. H., and Geng, W. D., 2005. High performance Al-Zn-In series sacrificial anode materials. Materials for Mechanical Engineering, 29: 38–41.

    Google Scholar 

  • Harrt, W. H., 2002. Analytical evaluation of galvanic anode cathodic protection systems for steel in concrete. Corrosion, 58: 513–518.

    Article  Google Scholar 

  • He, J. G., Wen, J. B., and Li, X. D., 2011. Effects of precipitates on the electrochemical performance of Al sacrificial anode. Corrosion Science, 53: 1948–1953.

    Article  Google Scholar 

  • Hernandez, M. A., and Genesca, J., 2002. Electrochemical characterization of an Al-Zn-In galvanic anode, corrosion. NACE Conference, Colorado, No. 02022.

  • Hou, B. R., 2004. The law of corrosion and control technology in marine environment. Journal of Environment Science and Management, 5: 20.

    Google Scholar 

  • Huang, Y. B., Liu, X. B., and Ding, H. D., 2001. Research on corrosion protection of Al-Zn-In-Mg-Ti sacrificial anode materials in sea environment. Equipment Environmental Engineering, 7: 46–48.

    Google Scholar 

  • Ji, M. T., Ni, X. Y., and Yang, F. Y., 1995. A study on electrode behavior of sacrificial anode protection system for marine reinforced concrete structure. Oceanologia et Limnologia Sinica, 26: 276–280.

    Google Scholar 

  • Jiao, M. W., Wen, J. B., and Zhao, S. L., 2009. Effect of solution treatment on electrochemical performance of Al-Zn-In-Mg-Ti-Mn alloys. Corrosion Science and Protection Technology, 21: 285–287.

    Google Scholar 

  • Khireche, S., Boughrara, D., Kadri, A., Hamadou, L., and Benbrahim, N., 2014. Corrosion mechanism of Al, Al-Zn and Al-Zn-Sn alloys in 3 wt.% NaCl solution. Corrosion Science, 87: 504–516.

    Article  Google Scholar 

  • Li, J. R., Zhang, B. B., Wei, Q. Y., Wang, N., and Hou, B. R., 2017. Electrochemical behavior of Mg-Al-Zn-In alloy as anode materials in 3.5 wt.% NaCl solution. Electrochimica Acta, 1: 156–167.

    Article  Google Scholar 

  • Li, W. L., Yan, Y. G., Chen, G., and Li, M., 2011. The effect of temperature and dissolved oxygen concentration on the electrochemical behavior of Al-Zn-inbased anodes. Procedia Engineering, 12: 27–34.

    Article  Google Scholar 

  • Li, Y., 2001. Factors for electrochemical performance of sacrificial anode in sea bed mud. Corrosion and Protection, 22: 527–529.

    Google Scholar 

  • Li, Y., 2004. The cathodic protection of jacket in deep water. Total Corrosion Control, 18: 18–20.

    Google Scholar 

  • Liao, H. X., Zhu, H. H., and Qi, G. T., 2004. The effect of temperature on active dissolution behaviour of aluminium sacrificial anodes. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2: 114–116.

    Google Scholar 

  • Liu, F., Zhang, J., Sun, C., Yu, Z., and Hou, B. R., 2014. The corrosion of two aluminium sacrificial anode alloys in SRB-containing sea mud. Corrosion Science, 83: 375–381.

    Article  Google Scholar 

  • Liu, F. L., Zhang, J., Sun, C. X., Yu, Z. H., and Hou, B. R., 2014. The corrosion of two aluminium sacrificial anode alloys in SRB-containing sea mud. Corrosion Science, 83: 375–381.

    Article  Google Scholar 

  • Liu, F. L., Zhang, J., Zhang, S. T., Li, W. H., Duan, J. Z., and Hou, B. R., 2012. Effect of sulphate reducing bacteria on corrosion of Al-Zn-In-Sn sacrificial anodes in marine sediment. Materials and Corrosion, 63: 431–437.

    Article  Google Scholar 

  • Ma, J., and Wen, J., 2010. Corrosion analysis of Al-Zn-In-Mg-Ti-Mn sacrificial anode alloy. Journal of Alloys and Compounds, 496: 110–115.

    Article  Google Scholar 

  • Ma, J. L., Wen, J. B., and Li, Q. A., 2013. Electrochemical noise analysis of the corrosion behaviors of Al-Zn-In based alloy in NaCl solution. Physics Procedia, 50: 421–426.

    Article  Google Scholar 

  • Ma, J. L., Wen, J. B., Li, X. D., Zhao, S. L., and Yan, Y. F., 2009. Influence of Mg and Ti on the microstructure and electrochemical performance of aluminum alloy sacrificial anodes. Rare Metals, 28: 187–192.

    Article  Google Scholar 

  • Ma, J. L., Wen, J. B., Zhai, W. X., and Li, Q. A., 2012. In situ corrosion analysis of Al-Zn-In-Mg-Ti-Ce sacrificial anode alloy. Materials Characterization, 65: 86–92.

    Article  Google Scholar 

  • Ma, J. L., Wen, J. B., Li, G. X., and Xu, C. H., 2010. The corrosion behaviour of Al-Zn-In-Mg-Ti alloy in NaCl solution. Corrosion Science, 52: 534–539.

    Article  Google Scholar 

  • Ma, J., Wen, J., Li, Q., and Zhang, Q., 2013. Effects of acidity and alkalinity on corrosion behaviour of Al-Zn-Mg based anode alloy. Journal of Power Sources, 226: 156–161.

    Article  Google Scholar 

  • Ma, K. Y., Song, Y. H., and Gou, Z. C., 2005. Research on Al-Zn-In-based high-performance sacrificial anode materials. Journal of Kunming University of Science and Technology (Science and Technology), 30: 20–23.

    Google Scholar 

  • Munoz, A. G., Saidman, S. B., and Besson, J. B., 2002. Corrosion of an Al-Zn-In alloy in chloride media. Corrosion Science, 44: 2171–2182.

    Article  Google Scholar 

  • Murray, J. N., 2001. The role of modifying elements on the behavior of indium activated, aluminum/zinc alloy sacrificial anodes, Corrosion. NACE International, Houston, paper No. 01506.

    Google Scholar 

  • NACE Standard RP0176-2003, Corrosion control of steel fixed offshore structures associated with petroleum production 2003.

  • Rossi, S., Bonora, P., Pasinetti, L., and Draghetti, R. M., 1998. Laboratory and field characterization of a new sacrificial anode for cathodic protection of offshore structures. Corrosion, 54: 1018–1025.

    Article  Google Scholar 

  • Schrieber, C. F., and Murray, R. W., 1988. Effect of hostile marine environments on the Al-Zn-In-Si sacrificial anode. Materials Protection, 28: 70–77.

    Google Scholar 

  • Sun, H. J., Liu, L., Li, Y., Ma, L., and Yan, Y. G., 2013. The performance of Al-Zn-In-Mg-Ti sacrificial anode in simulated deep water environment. Corrosion Science, 77: 77–87.

    Article  Google Scholar 

  • Wang, H. X., Huangfu, W. Z., Liu, Z. Y., Du, C. W., Li, X. G., Song, D. D., and Cao, B., 2017. Influence of sea mud state on the anodic behaviour of Al-Zn-In-Mg-Ti sacrificial anode. Ocean Engineering, 136: 11–17.

    Article  Google Scholar 

  • Yao, C. Z., Tay, S. L., Zhu, T. P., Shang, H. F., and Gao, W., 2015. Effects of Mg content on microstructure and electrochemical properties of Zn-Al-Mg alloys. Journal of Alloys and Compounds, 645: 131–136.

    Article  Google Scholar 

  • Yu, Y. Q., 2001. A study on the anti-corrosive technology for jacket platform working in shallow beach sea. China Ocean Platform, 16: 37–41.

    Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge the financial support to this project by the National Natural Science Foundation of China (No. 41576076).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Du.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Du, M., Liang, H. et al. Study on Al-Zn-In Alloy as Sacrificial Anodes in Seawater Environment. J. Ocean Univ. China 18, 889–895 (2019). https://doi.org/10.1007/s11802-019-3788-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-019-3788-7

Key words

Navigation