Skip to main content
Log in

Temperature-Dependent Fatty Acid Composition Change of Phospholipid in Steelhead Trout (Oncorhynchus mykiss) Tissues

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

In this study, the changes of the fatty acid composition of phospholipid in different tissues (muscle, heart, brain and spleen) of steelhead trout (Oncorhynchus mykiss) were analyzed when the water temperature decreased gradually from 16°C to 12°C, 8°C, 6°C, 4°C, 2°C and 1°C. Three fish individuals each tank (average weight 70.32 g ± 9.12 g) were collected and used to analysis at each designed temperatures. At normal temperature (16°C), the fatty acid composition of phospholipid of muscle and heart was similar each other. The highest concentration of saturate fatty acids (SFA) was found in the phospholipid of spleen. The brain phospholipid contained higher oleic acid (18:1n9) than the phospholipid of other tissues at 16°C. When the environmental temperature decreased, the concentration of unsaturated fatty acids of phospholipids in all tissues increased, and accordingly the ratio pf the unsaturated to saturated fatty acids (U/S) and unsaturation index (UI) increased, indicating that steelhead trout can compensate temperature- dependent changes in membrane fluidity by remodeling the fatty acid composition of phospholipids. The changes in the fatty acid composition of phospholipid were tissue-specific. At the early stages of the experiment (16°C to 8°C), the fatty acid composition of phospholipid changed remarkably in muscle, heart, and spleen. When temperature decreased to less than 8°C, an obvious response of phospholipid fatty acid was observed in all tissues. The change of phospholipid composition of steelhead trout tissues may be affected by both cold stress and starvation when the temperature decreased to 2°C, and the change of phospholipid composition of muscle was very obvious.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aho, E., and Vornanen, M., 2001. Cold acclimation increases basal heart rate but decreases its thermal tolerance in rainbow trout (Oncorhynchus mykiss). Journal of Comparative Physiology B Biochemical Systemic & Environmental Physiology, 171 (2): 173–179.

    Article  Google Scholar 

  • Bell, J. G., Mcghee, F., Campbell, P. J., and Sargent, J. R., 2003. Rapeseed oil as an alternative to marine fish oil in diets of post–smolt Atlantic salmon (Salmo salar): Changes in flesh fatty acid composition and effectiveness of subsequent fish oil ‘wash out’. Aquaculture, 218 (1–4): 515–528.

    Article  Google Scholar 

  • Bell, M. V., and Tocher, D. R., 1989. Molecular species composition of the major phospholipids in brain and retina from rainbow trout (Salmo gairdneri). Biochemical Journal, 264 (3): 909–915.

    Article  Google Scholar 

  • Bell, M. V., Henderson, R. J., and Sargent, J. R., 2008. The role of phospholipids in nutrition and metabolism of teleost fish. Aquaculture, 280 (4): 21–34.

    Google Scholar 

  • Biro, P. A., Morton, A. E., Post, J. R., and Parkinson, E. A., 2004. Over–winter lipid depletion and mortality of age–0 rainbow trout (Oncorhynchus mykiss). Canadian Journal of Fisheries and Aquatic Sciences, 61 (8): 1513–1519.

    Article  Google Scholar 

  • Buda, C., Dey, I., Balogh, N., Horvath, L. I., Maderspach, K., Juhasz, M., Yeo, Y. K., and Farkas, T., 1994. Structural order of membranes and composition of phospholipids in fish brain cells during thermal acclimatization. Proceedings of the National Academy of Sciences, 91 (17): 8234–8238.

    Article  Google Scholar 

  • Cengiz, E. I., Bayar, A. S., and Kizmaz, V., 2016. The protective effect of vitamin E against changes in fatty acid composition of phospholipid subclasses in gill tissue of Oreochromis niloticus exposed to deltamethrin. Chemosphere, 147 (1): 138–143.

    Article  Google Scholar 

  • Cengiz, E. I., Bayar, A. S., Kizmaz, V., Başhan, M., and Satar, A., 2017. Acute toxicity of deltamethrin on the fatty acid composition of phospholipid classes in liver and gill tissues of Nile tilapia. International Journal of Environmental Research, 8: 1–9.

    Google Scholar 

  • Copeman, L. A., Laurel, B. J., and Parrish, C. C., 2013. Effect of temperature and tissue type on fatty acid signatures of two species of North Pacific juvenile gadids: A laboratory feeding study. Journal of Experimental Marine Biology and Ecology, 448: 188–196.

    Article  Google Scholar 

  • Cossins, A. R., and Prosser, C. L., 1982. Variable homeoviscous responses of different brain membranes of thermally–acclimated goldfish. Biochimica et Biophysica Acta, 687 (2): 303.

    Article  Google Scholar 

  • Crockett, E. L., 2008. The cold but not hard fats in ectotherms: Consequences of lipid restructuring on susceptibility of biological membranes to peroxidation, a review. Journal of Comparative Physiology B Biochemical Systemic and Environmental Physiology, 178 (7): 795–809.

    Article  Google Scholar 

  • Dey, I., Buda, C., Wiik, T., Halver, J. E., and Farkas, T., 1993. Molecular and structural composition of phospholipid membranes in livers of marine and freshwater fish in relation to temperature. Proceedings of the National Academy of Sciences of the United States of America, 90 (16): 7498–7502.

    Article  Google Scholar 

  • Donaldson, M. R., Cooke, S. J., Patterson, D. A., and Macdonald, J. S., 2008. Cold shock and fish. Journal of Fish Biology, 73 (7): 1491–1530.

    Article  Google Scholar 

  • Fänge, R., and Nilsson, S., 1985. The fish spleen: Structure and function. Experientia, 41 (2): 152.

    Article  Google Scholar 

  • Fadhlaoui, M., and Couture, P., 2016. Combined effects of temperature and metal exposure on the fatty acid composition of cell membranes, antioxidant enzyme activities and lipid peroxidation in yellow perch (Perca flavescens). Aquatic Toxicology, 180: 45–55.

    Article  Google Scholar 

  • Farkas, T., Fodor, E., Kitajka, K., and Halver, J. E., 2001. Response of fish membranes to environmental temperature. Aquaculture Research, 32 (32): 645–655.

    Article  Google Scholar 

  • Fokina, N. N., Ruokolainen, T. R., Bakhmet, I. N., and Nemova, N. N., 2015. Lipid composition in response to temperature changes in blue mussels Mytilus edulis L. from the White Sea. Journal of the Marine Biological Association of the United Kingdon, 1 (8): 1–6.

    Google Scholar 

  • Folch, J., Lees, M., and Sloane, S. G. H., 1957. A simple method for the isolation and purification of total lipides from animal tissues. Journal of Biological Chemistry, 226 (1): 497–509.

    Google Scholar 

  • Han, L., Guo, Y., and Dong, S., 2016. Establishment of national offshore aquaculture experimental zone in the Yellow Sea cold water. Pacific Journal, 24 (5): 79–85 (in Chinese with English abstract).

    Google Scholar 

  • Hazel, J. R., 1979. Influence of thermal acclimation on membrane lipid composition of rainbow trout liver. American Journal of Physiology, 236 (1): 91–101.

    Google Scholar 

  • Hazel, J. R., and Williams, E. E., 1990. The role of alterations in membrane lipid composition in enabling physiological adaptation of organisms to their physical environment. Progress in Lipid Research, 29 (3): 167–227.

    Article  Google Scholar 

  • Hong, H., Zhou, Y., Wu, H., Luo, Y., and Shen, H., 2014. Lipid content and fatty acid profile of muscle, brain and eyes of seven freshwater fish: A comparative study. Journal of the American Oil Chemists Society, 91 (5): 795–804.

    Article  Google Scholar 

  • Hsieh, S. L., Chen, Y. N., and Kuo, C. M., 2003. Physiological responses, desaturase activity, and fatty acid composition in milkfish (Chanos chanos) under cold acclimation. Aquaculture, 220 (1): 903–918.

    Article  Google Scholar 

  • Ingemansson, T., Olsson, N. U., and Kaufmann, P., 1993. Lipid composition of light and dark muscle of rainbow trout (Oncorhynchus mykiss) after thermal acclimation: A multivariate approach. Aquaculture, 113 (1): 153–165.

    Article  Google Scholar 

  • Jobling, M., and Bendiksen, E. Å., 2015. Dietary lipids and temperature interact to influence tissue fatty acid compositions of Atlantic salmon, Salmo salar L., parr. Aquaculture Research, 34 (15): 1423–1441.

    Article  Google Scholar 

  • Kostal, V., and Simek, P., 1998. Changes in fatty acid composition of phospholipids and triacylglycerols after cold–acclimation of an aestivating insect prepupa. Journal of Comparative Physiology, B, 168 (6): 453–460.

    Article  Google Scholar 

  • Li, G., Sinclair, A. J., and Li, D., 2011. Comparison of lipid content and fatty acid composition in the edible meat of wild and cultured freshwater and marine fish and shrimps from China. Journal of Agricultural & Food Chemistry, 59 (5): 1871.

    Article  Google Scholar 

  • Mellery, J., Geay, F., Stas, C., Tocher, D. R., Kestemont, P., Rollin, X., and Larondelle, Y., 2015. Does the water temperature influence the fatty acid metabolism of rainbow trout (Oncorhynchus mykiss) fed a vegetable diet? Communications in Agricultural & Applied Biological Sciences, 80 (1): 45–49.

    Google Scholar 

  • Ng, W. K., Sigholt, T., and Bell, G., 2015. The influence of environmental temperature on the apparent nutrient and fatty acid digestibility in Atlantic salmon (Salmo salar L.) fed finishing diets containing different blends of fish oil, rapeseed oil and palm oil. Aquaculture Research, 35 (13): 1228–1237.

    Article  Google Scholar 

  • Olsen, Y., 1999. Lipids and Essential Fatty Acids in Aquatic Food Webs: What Can Freshwater Ecologists Learn from Mariculture? Springer Sicence Business Media, New York, 161–202.

    Google Scholar 

  • Osman, H., and Suriah, A. R., 2001. Fatty acid composition and cholesterol content of selected marine fish in Malaysian waters. Food Chemistry, 73 (1): 55–60.

    Article  Google Scholar 

  • Pauly, D., and Zeller, D., 2017. Comments on FAOs State of World Fisheries and Aquaculture (SOFIA 2016). Marine Policy, 77: 176–181.

    Article  Google Scholar 

  • Pettegrew, J. W., Panchalingam, K., Mcclure, R. J., Gershon, S., Muenz, L. R., and Levine, J., 2015. Effects of chronic lithium administration on rat brain phosphatidylinositol cycle constituents, membrane phospholipids and amino acids. Bipolar Disorders, 3 (4): 189–201.

    Article  Google Scholar 

  • Schregel, W. D., 2013. Changes in tissue–specific fatty acid composition of the freshwater alewife (Alosa pseudoharengus) in response to temperature. Digital Commons at Buffalo State, Paper 9. The State University of New York.

    Google Scholar 

  • Sigholt, T., and Finstad, B., 1990. Effect of low temperature on seawater tolerance in Atlantic salmon (Salmo salar) smolts. Aquaculture, 84 (2): 167–172.

    Article  Google Scholar 

  • Sinensky, M., 1974. Homeoviscous adaptation–A homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 71 (2): 522–525.

    Article  Google Scholar 

  • Skuladottir, G. V., Schioth, H. B., Gudmundsdottir, E., Richards, B., Gardarsson, F., and Jonsson, L., 1990. Fatty acid composition of muscle, heart and liver lipids in Atlantic salmon, Salmo salar, at extremely low environmental temperature. Aquaculture, 84 (1): 71–80.

    Article  Google Scholar 

  • Sloat, M. R., Reeves, G. H., and Jonsson, B., 2014. Individual condition, standard metabolic rate, and rearing temperature influence steelhead and rainbow trout (Oncorhynchus mykiss) life histories. Canadian Journal of Fisheries and Aquatic Sciences, 71 (4): 491–501.

    Article  Google Scholar 

  • Snyder, R. J., and Hennessey, T. M., 2003. Cold tolerance and homeoviscous adaptation in freshwater alewives (Alosa pseudoharengus). Fish Physiology and Biochemistry, 29 (2): 117–126.

    Article  Google Scholar 

  • Snyder, R. J., Schregel, W. D., and Wei, Y., 2012. Effects of thermal acclimation on tissue fatty acid composition of freshwater alewives (Alosa pseudoharengus). Fish Physiology and Biochemistry, 38 (2): 363–373.

    Article  Google Scholar 

  • Stoknes, I., Kland, H., Falch, E., and Synnes, M., 2004. Fatty acid and lipid class composition in eyes and brain from teleosts and elasmobranchs. Comparative Biochemistry and Physiology B: Biochemistry & Molecular Biology, 138 (2): 183–191.

    Article  Google Scholar 

  • Stubhaug, I., Lie, Ø., and Torstensen, B. E., 2007. Fatty acid productive value and β–oxidation capacity in Atlantic salmon (Salmo salar L.) fed on different lipid sources along the whole growth period. Aquaculture Nutrition, 13 (2): 145–155.

    Article  Google Scholar 

  • Tocher, D. R., and Glencross, B. D., 2015. Lipids and fatty acids. In: Dietary Nutrients, Additives and Fish Health. Lee, C., ed., John Wiley & Sons, Inc., USA, 355pp.

    Book  Google Scholar 

  • Wallaert, C., and Babin, P. J., 1994. Thermal adaptation affects the fatty acid composition of plasma phospholipids in trout. Lipids, 29 (5): 373–376.

    Article  Google Scholar 

  • Wijekoon, M. P. A., 2011. Effect of water temperature and diet on cell membrane fluidity and fatty acid composition of muscle, liver, gill and intestine mucosa of adult and juvenile steelhead trout, Oncorhynchus mykiss. PhD thesis. Memorial University of Newfoundland, St. John’s, Newfoundland, Canada.

    Google Scholar 

  • Wodtke, E., 1978. Lipid adaptation in liver mitochondrial membranes of carp acclimated to different environmental temperatures: Phospholipid composition, fatty acid pattern and cholesterol content. Biochimica Biophysica Acta–Lipids and Lipid Metabolism, 529 (2): 280–291.

    Article  Google Scholar 

  • Xu, H., Zhang, D., Yu, D., Lv, C., Luo, H., and Wang, Z., 2015. Molecular cloning and expression analysis of scd1 gene from large yellow croaker Larimichthys crocea under cold stress. Gene, 568 (1): 100–108.

    Article  Google Scholar 

  • Ye, C., Wan, F., Sun, Z., Cheng, C., Ling, R., Fan, L., and Wang, A., 2016. Effect of phosphorus supplementation on cell viability, anti–oxidative capacity and comparative proteomic profiles of puffer fish (Takifugu obscurus) under low temperature stress. Aquaculture, 452: 200–208.

    Article  Google Scholar 

  • Yeagle, P. L., 1989. Lipid regulation of cell membrane structure and function. The FASEB Journal, 3 (7): 1833–1842.

    Article  Google Scholar 

  • Zhang, S., Xu, J., Hou, Y., Xu, S., Miao, M., and Yan, X., 2010. Comparison of fatty acid composition among muscles and visceral organs of Trachinotus ovatus. Food Science, 31 (10): 192–195 (in Chinese with English abstract).

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank those who have critically review this manuscript. This study was jointly funded by the National Natural Science Foundation of China (Nos. 31572634 and 31702364), the Fundamental Research Funds for the Central Universities of China (No. 20161205), the Key Research and Development Program of Shandong Province (Nos. 2016CYJS04A01 and 2017CXGC0106), and Science and Technology Planning Project of Guangdong Province, China (No. 2017B030314052).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yangen Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Dong, S., Zhou, Y. et al. Temperature-Dependent Fatty Acid Composition Change of Phospholipid in Steelhead Trout (Oncorhynchus mykiss) Tissues. J. Ocean Univ. China 18, 519–527 (2019). https://doi.org/10.1007/s11802-019-3775-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-019-3775-z

Key words

Navigation