Advertisement

Journal of Ocean University of China

, Volume 17, Issue 5, pp 1231–1242 | Cite as

Taxonomic Clarification of A Well-Known Pathogenic Scuticociliate, Miamiensis avidus Thompson & Moewus, 1964 (Ciliophora, Scuticociliatia)

  • Mingzhen Ma
  • Borong Lu
  • Xinpeng Fan
  • Yuhong ShiEmail author
  • Xiangrui ChenEmail author
Article

Abstract

Miamiensis avidus Thompson & Moewus, 1964, is a cosmopolitan and well-known marine pathogenic ciliated protist. However, the taxonomy of this species up to now has remained controversial, especially with respect to the validity of the morphologically similar species, Philasterides dicentrarchi, which was considered as a junior synonym of M. avidus. In this study, a population of M. avidus was collected from the skin of pharaoh cuttlefish (Sepia pharaonis) cultured near the East China Sea, Ningbo, China and its morphology and phylogeny were investigated in detail based on living characters, infraciliature, small subunit (SSU) rDNA and ITS1-5.8S-ITS2 region sequences. In addition, the morphometrics of a previously reported free-living population, collected from the Bohai Sea, were rechecked and analyzed. We compared the present two isolates with all historic populations of M. avidus and P. dicentrarchi, and found that their morphological characters were either highly similar or exactly identical, indicating that they are the same morphospecies. However, the phylogenetic analyses based on SSU rDNA or ITS1-5.8S-ITS2 region sequences revealed that most M. avidus and P. dicentrarchi populations formed one clade, and the two isolates of M. avidus from Weifang and American Type Culture Collection clustered in another clade, which indicated that there might be cryptic species in Miamiensis avidus.

Key words

Miamiensis avidus morphology phylogeny SSU rDNA synonym ITS1-5.8S-ITS2 region 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 31572230), the Open Fund of Zhejiang Provincial Top Key Discipline of Aquaculture in Ningbo University (No. xkzsc1417), the K. C. Wong Magna Fund in Ningbo University, and the Scientific Research Foundation of Graduate School of Ningbo University. We are very grateful to Dr. Jie Huang (Institute of Hydrobiology, Chinese Academy of Sciences) for her help with the phylogenetic analysis.

References

  1. Buchmann, K., 2015. Impact and control of protozoan parasites in maricultured fishes. Parasitology, 142: 168–177.CrossRefGoogle Scholar
  2. Budino, B., Lamas, J., Pata, M. P., Arranz, J. A., Sanmartín, M. L., and Leiro, J., 2011. Intraspecific variability in several isolates of Philasterides dicentrarchi (syn. Miamiensis avidus), a scuticociliate parasite of farmed turbot. Veterinary Parasitology, 175: 260–272.CrossRefGoogle Scholar
  3. Corliss, J. O., 1979. The Ciliated Protozoa: Characterization, Classification, and Guide to the Literature. Pergamon Press, Oxford, 261–262.Google Scholar
  4. Dragesco, A., Dragesco, J., Coste, F., Gasc, C., Romestand, B., Raymond, J. C., and Bouix, G. 1995. Philasterides dicentrarchi, n. sp., (Ciliophora, Scuticociliatida), a histophagous opportunistic parasite of Dicentrarchus labrax (Linnaeus, 1758), a reared marine fish. European Journal of Protistology, 31: 327–340.CrossRefGoogle Scholar
  5. Fan, X. P., Chen, X. R., Song, W. B., Al-Rasheid, K. A. S., and Warren, A., 2010. Two new marine scuticociliates, Sathrophilus planus n. sp. and Pseudoplatynematum dengi n. sp., with improved definition of Pseudoplatynematum (Ciliophora, Oligohymenophora). European Journal of Protistology, 46: 212–220.CrossRefGoogle Scholar
  6. Fan, X. P., Hu, X. Z., Al-Farraj, S. A., Clamp, J. C., and Song, W. B., 2011a. Morphological description of three marine ciliates (Ciliophora, Scuticociliatia), with establishment of a new genus and two new species. European Journal of Protistology, 47: 186–196.CrossRefGoogle Scholar
  7. Fan, X. P., Lin, X. F., Al-Rasheid, K. A. S., Al-Farraj, S. A., Warren, A., and Song, W. B., 2011b. The diversity of scuticociliates (Protozoa, Ciliophora): A report on eight marine forms found in coastal waters of China, with a description of one new species. Acta Protozoologica, 50: 219–234.Google Scholar
  8. Felipe, A. P., Lamas, J., Sueiro, R. A., Folgueira, I., and Leiro, J. M., 2017. New data on flatfish scuticociliatosis reveal that Miamiensis avidus and Philasterides dicentrarchi are different species. Parasitology, 144: 1394–1411.CrossRefGoogle Scholar
  9. Gao, F., Fan, X. P., Yi, Z. Z., Strüder-Kypke, M., and Song, W. B., 2010. Phylogenetic consideration of two scuticociliate genera, Philasterides and Boveria (Protozoa, Ciliophora) based on 18S rRNA gene sequences. Parasitology International, 59: 549–555.CrossRefGoogle Scholar
  10. Gao, F., Gao, S., Wang, P., Katz, L. A., and Song, W. B., 2014. Phylogenetic analyses of cyclidiids (Protista, Ciliophora, Scuticociliatia) based on multiple genes suggest their close relationship with thigmotrichids. Molecular Phylogenetics and Evolution, 75: 219–226.CrossRefGoogle Scholar
  11. Gao, F., Huang, J., Zhao, Y., Li, L. F., Liu, W. W., Miao, M., Zhang, Q. Q., Li, J. M., Yi, Z. Z., El-Serehy, H. A., Warren, A., and Song, W. B., 2017. Systematic studies on ciliates (Alveolata, Ciliophora) in China: Progress and achievements based on molecular information. European Journal of Protistology, 61 (Pt B): 409–423, DOI: 10.1016/j.ejop.2017.04.009.CrossRefGoogle Scholar
  12. Gao, F., Katz, L. A., and Song, W. B., 2012a. Insights into the phylogenetic and taxonomy of philasterid ciliates (Protozoa, Ciliophora, Scuticociliatia) based on analyses of multiple molecular markers. Molecular Phylogenetics and Evolution, 64: 308–317.CrossRefGoogle Scholar
  13. Gao, F., Strüder-Kypke, M., Yi, Z. Z., Miao, M., Al-Farraj, S. A., and Song, W., 2012b. Phylogenetic analysis and taxonomic distinction of six genera of pathogenic scuticociliates (Protozoa, Ciliophora) inferred from small-subunit rRNA gene sequences. International Journal of Systematic and Evolutionary Microbiology, 62: 246–256.CrossRefGoogle Scholar
  14. Gao, F., Warren, A., Zhang, Q., Gong, J., Miao, M., Sun, P., Xu, D., Huang, J., Yi, Z. Z., and Song, W. B., 2016. The all-databased evolutionary hypothesis of ciliated protists with a revised classification of the phylum Ciliophora (Eukaryota, Alveolata). Scientific Reports, 6: 24874.CrossRefGoogle Scholar
  15. Gomez-Saladin, E., and Small, E. B., 1993a. Oral morphogenesis of the microstome to macrostome transformation in Miamiensis avidus strain Ma/2. Journal of Eukaryotic Microbiology, 40: 363–370.CrossRefGoogle Scholar
  16. Gomez-Saladin, E., and Small, E. B., 1993b. Prey-induced transformation of Miamiensis avidus strain Ma/2 by a soluble factor. Journal of Eukaryotic Microbiology, 40: 550–556.CrossRefGoogle Scholar
  17. Hall, T. A., 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41: 95–98.Google Scholar
  18. Huang, J., Luo, X., Bourland, W. A., Gao, F., and Gao, S., 2016. Multigene-based phylogeny of the ciliate families Amphisiellidae and Trachelostylidae (Protozoa: Ciliophora: Hypotrichia). Molecular Phylogenetics and Evolution, 101: 101–110.CrossRefGoogle Scholar
  19. Iglesias, R., Paramá, A., Alvarez, M. F., Leiro, J., Fernández, J., and Sanmartín, M. L., 2001. Philasterides dicentrarchi (Ciliophora, Scuticociliatida) as the causative agent of scuticociliatosis in farmed turbot Scophthalmus maximus in Galicia (NW Spain). Diseases of Aquatic Organisms, 46: 47–55.CrossRefGoogle Scholar
  20. Jung S. J., Bae M. J., Oh, M. J., and Lee, J., 2011. Sequence conservation in the internal transcribed spacers and 5.8S ribosomal RNA of parasitic scuticociliates Miamiensis avidus (Ciliophora, Scuticociliatia). Parasitology International, 60: 216–219.CrossRefGoogle Scholar
  21. Jung, S. J., Im, E. Y., Strüder-Kypke, M. C., Kitamura, S. I., and Woo, P. T. K., 2010. Small subunit ribosomal RNA and mitochondrial cytochrome c oxidase subunit 1 gene sequences of 21 strains of the parasitic scuticociliate Miamiensis avidus (Ciliophora, Scuticociliatia). Parasitology Research, 108: 1153–1161.CrossRefGoogle Scholar
  22. Jung, S. J., Kitamura, S. I., Song, J. Y., and Oh, M. J., 2007. Miamiensis avidus (Ciliophora: Scuticociliatida) causes systemic infection of olive flounder Paralichthys olivaceus and is a senior synonym of Philasterides dicentrarchi. Diseases of Aquatic Organisms, 73: 227–234.CrossRefGoogle Scholar
  23. Kim, S. M., Cho, J. B., Kim, S. K., Nam, Y. K., and Kim, K. H., 2004. Occurrence of scuticociliatosis in olive flounder Paralichthys olivaceus by Phiasterides dicentrarchi (Ciliophora: Scuticociliatida). Diseases of Aquatic Organisms, 62: 233–238.CrossRefGoogle Scholar
  24. Lynn, D. H., 2008. The Ciliated Protozoa: Characterization, Classification and Guide to the Literature. Springer Verlag, Dordrecht, 1–605.Google Scholar
  25. Medlin, L., Elwood, H. J., Stickel, S., and Sogin, M. L., 1988. The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene, 71: 491–499.CrossRefGoogle Scholar
  26. Nylander, J. A. A., 2004. MrModeltest v2. Uppsala University.Google Scholar
  27. Pan, X. M., 2016. Seven scuticociliates (Protozoa, Ciliophora) from Alabama, USA, with descriptions of two parasitic species isolated from a freshwater mussel Potamilus purpuratus. European Journal of Taxonomy, 249: 1–19.Google Scholar
  28. Pan, X. M., Fan, X. P., Al-Farraj, S. A., Gao, S., and Chen, Y., 2016. Taxonomy and morphology of four ‘ophrys-related’ scuticociliates (Protista, Ciliophora, Scuticociliatia), with the description of a new genus, Paramesanophrys gen. nov. European Journal of Taxonomy, 191: 1–18.Google Scholar
  29. Pan, X. M., Liang, C. D., Wang, C. D., Warren, A., Mu, W. J., Chen, H., Yu, L. J., and Chen, Y., 2017. One freshwater species of the genus Cyclidium, Cyclidium sinicum spec. nov. (Protozoa; Ciliophora), with an improved diagnosis of the genus Cyclidium. International Journal of Systematic and Evolutionary Microbiology, 67: 557–564.CrossRefGoogle Scholar
  30. Pan, X. M., Zhu, M. Z., Ma, H. G., Al-Rasheid, K. A. S., and Hu, X. Z., 2013. Morphology and small-subunit rRNA gene sequences of two novel marine ciliates, Metanophrys orientalis spec. nov. and Uronemella sinensis spec. nov. (Protista, Ciliophora, Scuticociliatia), with an improved diagnosis of the genus Uronemella. International Journal of Systematic and Evolutionary Microbiology, 63: 3515–3523.Google Scholar
  31. Posada, D., and Crandall, K. A., 1998. Modeltest: Testing the model of DNA substitution. Bioinformatics, 14: 817–818.CrossRefGoogle Scholar
  32. Ronquist, F., and Huelsenbeck, J. P., 2003. MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19: 1572–1574.CrossRefGoogle Scholar
  33. Rossteuscher, S., Wenker, C., Jermann, T., Wahli, T., Oldenberg, E., and Schmidt-Posthaus, H., 2008. Severe scuticociliate (Philasterides dicentrarchi) infection in a population of sea dragons (Phycodurus eques and Phyllopteryx taeniolatus). Veterinary Parasitology, 45: 546–550.Google Scholar
  34. Seo, J. S., Jeon, E. J., Jung, S. H., Park, M. A., Kim, J. W., Kim, K. H., Woo, S. H., and Lee, E. H., 2013. Molecular cloning and expression analysis of peptidase genes in the fish-pathogenic scuticociliate Miamiensis avidus. BMC Veterinary Research, 9: 10.CrossRefGoogle Scholar
  35. Small, E. B., and Lynn, D. H., 1985. Phylum Ciliophora. In: An Illustrated Guide to the Protozoa. Lee, J. J., et al., eds., Society of Protozoologists Special Publication, Lawrence, Kansas, 393–575.Google Scholar
  36. Smith, P. J., McVeagh, S. M., Hulston, D., Anderson, S. A., and Gublin, Y., 2009. DNA identification of ciliates associated with disease outbreaks in a New Zealand marine fish hatchery. Diseases of Aquatic Organisms, 86: 163–167.CrossRefGoogle Scholar
  37. Song, W. B., Warren, A., and Hu, X. Z., 2009. Free-Living Ciliates in the Bohai and Yellow Seas, China. Science Press, Beijing, 178–179.Google Scholar
  38. Song, W. B., and Wilbert, N., 2000. Redefinition and redescription of some marine scuticociliates from China, with report of a new species, Metanophrys sinensis nov. spec. (Ciliophora, Scuticociliatida). Zoologischer Anzeiger, 239: 45–74.Google Scholar
  39. Song, W. B., Zhao, Y. J., Xu, K. D., Hu, X. Z., and Gong, J., 2003. Pathogenic Protozoa in Mariculture. Science Press, Beijing, 257–260.Google Scholar
  40. Stamatakis, A., Hoover, P., and Rougemont, J., 2008. A rapid bootstrap algorithm for the RAxML Web servers. Systematic Biology, 57: 758–771.CrossRefGoogle Scholar
  41. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S., 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28: 2731–2739.CrossRefGoogle Scholar
  42. Tao, Z., Liu, L., Chen, X. R., Zhou, S. M., and Wang, G. L., 2016. First isolation of Miamiensis avidus (Ciliophora: Scuticociliatida) associated with skin ulcers from reared pharaoh cuttlefish Sepia pharaonis. Diseases of Aquatic Organisms, 122: 67–71.CrossRefGoogle Scholar
  43. Thompson, J. C., and Moewus, L., 1964. Miamiensis avidus n. g., n. sp., a marine facultative parasite in the ciliate order Hymenostomatida. Journal of Protozoology, 11: 378–381.Google Scholar
  44. Wang, C. D., Zhang, T. T., Wang, Y. R., Katz, L. A., Gao, F., and Song, W. B., 2017a. Disentangling sources of variation in SSU rDNA sequences from single cell analyses of ciliates: Impact of copy number variation and experimental error. Proceeding of the Royal Society B, 284: 20170425.CrossRefGoogle Scholar
  45. Wang, Y., Chen, X., Sheng, Y., Liu, Y., and Gao, S., 2017b. N6-adenine DNA methylation is associated with the linker DNA of H2A.Z-containing well-positioned nucleosomes in Po1 II-transcribed genes in Tetrahymena. Nucleic Acids Research, 45: 11594–11606.CrossRefGoogle Scholar
  46. Wilbert, N., 1975. Eine verbesserte Technik der Protargolimprägnation für Ciliaten. Mikrokosmos, 64: 171–179.Google Scholar
  47. Xu, Y., Fan, X. P., Al-Farraj, S. A., and Hu, X. Z., 2017. Morphological description of two new ciliates (Ciliophora, Karyorelictea, Cryptopharyngidae): Apocryptopharynx discoidalis spec. nov. and Crytopharynx minutus spec. nov. European Journal of Protistology, 58: 77–86.CrossRefGoogle Scholar
  48. Yan, Y., Xu, Y., Al-Farraj, S. A., Al-Rasheid, K. A. S., and Song, W., 2016. Morphology and phylogeny of three trachelocercids (Protozoa, Ciliophora, Karyorelictea), with description of two new species and insight to the evolution of the family Trachelocercidae. Zoological Journal of the Linnean Socity, 177: 306–319.CrossRefGoogle Scholar
  49. Zhao, Y., Fan, X. P., Xu, Y., Hu, X. Z., and Ma, H. G., 2011. Morphological studies on eight marine scuticociliates (Protozoa, Ciliophora) from China. Acta Hydrobiologica Sinica, 35: 929–939.Google Scholar

Copyright information

© Science Press, Ocean University of China and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Marine SciencesNingbo UniversityNingboChina
  2. 2.Institute of Evolution and Marine BiodiversityOcean University of ChinaQingdaoChina
  3. 3.School of Life SciencesEast China Normal UniversityShanghaiChina

Personalised recommendations