Abbott, I. A., and Hollenberg, I. G., 1976. Marine Algae of California. Stanford University Press, California, 827pp.
Google Scholar
Aguilera-Morales, M., Casas-Valdez, M., Carrillo-Domìnguez, S., González-Acosta, B., and Perez Gil, F., 2005. Chemical composition and microbiological assays of marine algae Enteromorpha spp. as a potential food source. Journal Food Composition and Analysis, 18: 79–88.
Article
Google Scholar
Alagic, S., Stancic, I., Palic, R., Stojanovic, G., and Lepojevic, Z., 2006. Chemical composition of the supercritical carbon dioxide extracts of the Yaka, Prilep and Otlja tobaccos. Journal of Essential Oil Research, 18: 185–188.
Article
Google Scholar
Aleem, A. A., 1993. The marine algae of Alexandria, Egypt. PhD thesis. University of Alexandria, Alexandria, 45, 48 and 55.
Google Scholar
Arunkumar, K., Selvabalan, N., and Rengasamy, R., 2005. The antibacterial compound sulphoglycerolipid1-0palmitoyl-3-0(6’-sulpho-aquinovopyranosyl)-glycerol from Sargassum wightii Greville (Phaeophyceae). Botanica Marina, 48 (5): 441–445.
Google Scholar
Baig, H. S., and Zehra, I., 1997. Effect of NE and SW monsoonal changes on epifaunal diversity associated with sargassum virgatum (Mert). AG. Proc. 5th Scient. Meet ‘Ocean Interfaces. c’, 64pp.
Google Scholar
Balamurugan, M., Selvam, G. G., and Thinakaran, T. X., 2013. Biochemical study and GC-MS analysis of Hypnea musciformis (Wulf.) Lamouroux. American-Eurasian Journal of Scientific Research, 8: 117–123.
Google Scholar
Bergasson, G., Hilmarsson, H., and Thormar, H., 2011. Antibacterial, antiviral and antifungal activities of lipids. In: Lipids and Essential Oils as Antimicrobial Agents. Thormar, H., ed., John Wiley & Sons Ltd., Chichester, 47–80.
Google Scholar
Blunt, J. W., Copp, B. R., Keyzers, R. A., and Munroa, M. H. G., 2016. Marine natural products. Natural Product Reproduction, 33: 382–431.
Article
Google Scholar
Borowitzka, M. A., and Borowitzka, L. J., 1992. Vitamins and fine chemicals from microalgae In: Microalgal Biotechnology. Cambridge University Press, Great Britain, 179pp.
Google Scholar
Cardozo, K. H., Guaratini, T., Barros, M. P., Falcão, V. R., Tonon, A. P., Lopes, N. P., Campos, S., Torres, M. A., Souza, A. O., Colepicolo, P., and Pinto, E., 2007. Metabolites from algae with economical impact. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology, 146 (1-2): 60–78.
Google Scholar
Chowdhury, M. M. H., Kubra, K., Hossain, M. B., Mustafa, M. G., Jaina, T., Karim, M. R., and Mehedy, M. E., 2015. Screening of antibacterial and antifungal activity of fresh water and marine algae as a prominent natural antibiotic available in Bangladesh. International Journal of Pharmacology, 11: 828–833.
Article
Google Scholar
Choi, J. S., Ha, Y. M., Joo, C. U., Cho, K. K., and Kim, S., 2012. Inhibition of oral pathogens and collagenase activity by seaweed extracts. Journal of Environmental Biology, 33: 115–121.
Google Scholar
Cordeiro, R. A., Gomes, V. M., Carvalho, A. F., and Melo, V. M., 2006. Effect of proteins from the red seaweed Hypnea musciformis (Wulfen) Lamouroux on the growth of human pathogen yeasts. Brazilian Archives of Biology and Technology, 49: 915–921.
Article
Google Scholar
Egharevba, H. O., Iliya, L., Nneka, I., Abdullahi, M. S., Okwute, S. K., and Okogum, J. I., 2010. Broad spectrum antimicrobial activity of Psidium guajava Linn. Nature and Science, 8: 43–50.
Google Scholar
El Shoubaky, G. A., and Salem, E. A., 2014. Terpenes and sterols composition of marine brown algae Padina pavonia (Dictyotales) and Hormophysa triquetra (Fucales). International Journal of Pharmacognosy and Phytochemical Research, 6 (4): 894–900.
Google Scholar
Ely, R., Supriya, T., and Naik, C. G., 2004. Antimicrobial activity of marine organisms collected off the coast of East India. Journal of Experimental Marine Biology and Ecology, 309: 121–127.
Article
Google Scholar
Gao, S. H., Li, X. M., Li, C. S., Proksch, P., and Gui, B., 2011. Penicisteroides A and B, antifungal and cytotoxic polyoxygenated steroids from the marine alga derived endophytic fungus Penicillium chrysogenum QUEN-24S. Bioorganic & Medicinal Chemistry Letters, 21: 2894–2897.
Article
Google Scholar
Karabay, Y. N. U., Sukatar, A., Ozdemir, G., and Horzum, Z., 2007. Antimicrobial activity of volatile components and various extracts of the red alga Jania rubens. Phytotherapy Research, 21: 153–156.
Article
Google Scholar
Kaseleht, K., Leitner, E., and Paalme, T., 2011. Determining aroma active compounds in Kama Flour using SPME-GC/MS and GC olfactometry. Flavour and Fragrance Journal, 26: 122–128.
Article
Google Scholar
Lee, S. W., Wendy, W., Julius, Y. F. S., and Desy, F. S., 2011. Characterization of antimicrobial, antioxidant, anticancer property and chemical composition of Michelia champaca seed and flower extracts. Stamford Journal of Pharmaceutical Science, 4: 19–24.
Google Scholar
Lee, M. H., Lee, K. B., Oh, S. M., Lee, B. H., and Chee, H., 2010. Antifungal activities of dieckol isolated from the marine brown alga Ecklonia cava against Trichophyton rubrum. Journal of the Korean Society for Applied Biolgical Chemistry, 53 (4): 504–507.
Article
Google Scholar
Mallikharjuna, P. B., Rajanna, L. N., Seetharam, Y. N., and Sharanabasappa, G. K., 2007. Phytochemical studies Strychnos potatorum L.f. A medicinal plant. E-Journal of Chemistry, 4 (4): 510–518.
Google Scholar
Mbosso, E. J., Ngouela, S., Nguedia, J. C., Beng, V. P., Rohmer, M., and Tsamo, E., 2010. In vitro antimicrobial activity of extracts and compounds of some selected medicinal plants from Cameroon. Journal Ethnopharmacology, 128: 476–81.
Article
Google Scholar
Moussavou, G., Kwak, D. H., Obiang-Obonou, B. W., Maranguy, C. A., Dinzouna-Boutamba, S. D, Lee, D. H., Pissibanganga, O. G., Ko, K., Seo, J. I., and Choo, Y. K., 2014. Anticancer effects of different seaweeds on human colon and breast cancers. Marine Drugs, 12: 4898–4911.
Article
Google Scholar
Musharraf, S., Ahmed, M. A., Zehra, N., Choudhary, M., and Rahman, A. U., 2012. Biodiesel production from microalgal isolates of Southern Pakistan and quantification of FAMEs by GC-MS analysis. Chemistry Central Journal, 6: 1–10.
Google Scholar
Padmakumar, K. P., and Ayyakannu, K., 1997. Seasonal variation of antibacterial and antifungal activities of the extracts of marine algae from southern coasts of India. Botanica Marina, 40: 507–515.
Article
Google Scholar
Pandey, A., Naik, M. M., and Dubey, S. K., 2010. Organic metabolites produced by Vibrio parahaemolyticus strain An3 isolated from Goan mullet inhibit bacterial fish pathogens. African Journal of Biotechnology, 9 (42): 7134–7140.
Google Scholar
Ponnanikajamideen, M., Malini, M., Malarkodi, C., and Rajeshkumar, S., 2014. Biochemical and phytochemical constituents of marine brown seaweed extracts from various organic solvents. International Journal of Pharmacy & Therapeutics, 5: 108–112.
Google Scholar
Peña-Rodríguez, A., Mawhinney, T. P., Ricque-Marie, D., and Cruz-Suárez, L. E., 2011. Chemical composition of cultivated seaweed Ulva clathrat C. Agardh. Food Chemistry, 129: 491–498.
Article
Google Scholar
Prades, A., Assa, R., Dornier, M., Pain, J. P., and Boulangera, R., 2012. Characterization of the volatile profile of coconut water from five varieties using an optimized HS-SPME-GC analysis. Journal of the Science of Food and Agriculture, 92: 2471–2478.
Article
Google Scholar
Radhika, D., Veerabahu, C., and Priya, R., 2012. Antibacterial activity of some selected seaweeds from the Gulf of Mannar Coast, South India. Asian Journal of Pharmaceutical and Clinical Research, 5: 89–90.
Google Scholar
Rao, P. P. S., Rao, R. S., and Karmarker, S. M., 2009. Antibacterial activity from Indian species of Sargassum. Botanica Marina, 31: 295–298.
Google Scholar
Samarakoon, K. W., and Jeon, Y. J., 2012. Bio-functionalities of proteins derived from marine algae–A review. Food Research International, 48: 948–960.
Article
Google Scholar
Senthil, K. S., and Kamaraj, M., 2011. Antimicrobial activity of Cucumis anguria L by agar well diffusion method. Botany Research International, 4: 41–42.
Google Scholar
Stirk, W. A., and Reinecke, D. L., 2007. Seasonal variation in antifungal, antibacterial and acetylcholinesterase activity in seven South African seaweeds. Journal of Applied Phycology, 19: 271–276.
Article
Google Scholar
Stein, E. M., Colepicolo, P., Afonso, F. A. K., and Fujii, M. T., 2011. Screening for antifungal activities of extracts of the Brazilian seaweed genus Laurencia (Ceramiales, Rhodophyta). Revista Brasileira de Farmacognosia, 21 (2): 290–295.
Article
Google Scholar
Tuney, I, Cadirci, I., Unal, D., and Sukatar, A., 2006. Antimicrobial activities of the extracts of marine algae from the coast of Urla (Izmir, Turkey). Turkish Journal of Biology, 30: 171–175.
Google Scholar
Usha, R., and Maria, V. R. S., 2015. Gas chromatography and mass spectrometric analysis of Padina pavonia (L.) Lamour. Bioscience Discovery, 6 (1): 1–5.
Google Scholar
Val, A., Platas, G., Basilio, A., Gorrochategui, J., Suay, I., Vicente, F., Portillo, E., Río, M., Reina, M., and Peláez, F., 2001. Screening of antimicrobial activities in red, green and brown microalgae from Gran Canari (CanaryIslands, Spain). International Microbiology, 4: 35–40.
Google Scholar
Van Ginneken, V. J. T., Helsper, J. P. F. G., de Visser, W., Van Keulen, H., and Brandenburg, W. A., 2011. Polyunsaturated fatty acids in various macroalgal species from North Atlantic and tropical seas. Lipids Health Disease, 10 (1): 104.
Article
Google Scholar
Zovko, A., Gabric, M. V., Specic, K., Pohleven, F., Jaklic, D., Gunde-Cimerman, N., Lu, Z., Edrada-Ebel, R., Houssen, W. E., Mancini, I., Defant, A., Jaspars, M., and Turk, T., 2012. Antifungal and antibacterial activity of 3-alkylpyridinium polymeric analogs of marine toxins. International Biodeterioration and Biodegradation, 68: 71–77.
Article
Google Scholar