Advertisement

Journal of Ocean University of China

, Volume 17, Issue 3, pp 632–640 | Cite as

Characterization of Chiton Ischnochiton hakodadensis Foot Based on Transcriptome Sequencing

  • Huaiqian Dou
  • Yan Miao
  • Yuli Li
  • Yangping Li
  • Xiaoting Dai
  • Xiaokang Zhang
  • Pengyu Liang
  • Weizhi Liu
  • Shi Wang
  • Zhenmin Bao
Article
  • 39 Downloads

Abstract

Chiton (Ischnochiton hakodadensis) is one of marine mollusks well known for its eight separate shell plates. I. hakodadensis is important, which plays a vital role in the ecosystems it inhabits. So far, the genetic studies on the chiton are scarce due in part to insufficient genomic resources available for this species. In this study, we investigated the transcriptome of the chiton foot using Illumina sequencing technology. The reads were assembled and clustered into 256461 unigenes, of which 42247 were divided into diverse functional categories by Gene Ontology (GO) annotation terms, and 17256 mapped onto 365 pathways by KEGG pathway mapping. Meanwhile, a set of differentially expressed genes (DEGs) between distal and proximal muscles were identified as the foot adhesive locomotion associated, thus were useful for our future studies. Moreover, up to 679384 high-quality single nucleotide polymorphisms (SNPs) and 19814 simple sequence repeats (SSRs) were identified in this study, which are valuable for subsequent studies on genetic diversity and variation. The transcriptomic resource obtained in this study should aid to future genetic and genomic studies of chiton.

Key words

chiton transcriptome sequencing DEG SNP SSR 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We acknowledge grant support from the National Natural Science Foundation of China (Nos. 31130054, 31472258), the AoShan Talents Program of Qingdao National Laboratory for Marine Science and Technology (No. 2015ASTP-ES02), and the Fundamental Research Funds for the Central Universities (No. 201564009).

References

  1. Beeley, J. G., 1985. Glycoprotein and Proteoglycan Techniques. Elsevier, Amsterdam, 6pp.Google Scholar
  2. Benjamini, Y., and Hochberg, Y., 1995. Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of The Royal Statistical Society. Series B (Methodological), 57 (1): 289–300.Google Scholar
  3. Bettencourt, R., Pinheiro, M., Egas, C., Gomes, P., Afonso, M., Shank, T., and Santos, R. S., 2010. High-throughput sequencing and analysis of the gill tissue transcriptome from the deep-sea hydrothermal vent mussel Bathymodiolus azoricus. BMC Genomics, 11: 559.CrossRefGoogle Scholar
  4. Byern, D. B. J. V., and Grunwald, D. B. I., 2010. Biological Adhesive Systems: From Nature to Technical and Medical Application. Springer, Vienna, 53pp.CrossRefGoogle Scholar
  5. Connors, M. J., Ehrlich, H., Hog, M., Godeffroy, C., Araya, S., Kallai, I., Gazit, D., Boyce, M., and Ortiz, C., 2012. Threedimensional structure of the shell plate assembly of the chiton Tonicella marmorea and its biomechanical consequences. Journal of Structural Biology, 177 (2): 314–328.CrossRefGoogle Scholar
  6. Craft, J. A., Gilbert, J. A., Temperton, B., Dempsey, K. E., Ashelford, K., Tiwari, B., Hutchinson, T. H., and Chipman, J. K., 2010. Pyrosequencing of Mytilus galloprovincialis cDNAs: Tissue-specific expression patterns. PLoS One, 5 (1): e8875.CrossRefGoogle Scholar
  7. D’Arrigo, C., Burl, S., Withers, A. P., Dobson, H., Black, C., and Boxer, M., 1998. TGF-beta1 binding protein-like modules of fibrillin-1 and -2 mediate integrin-dependent cell adhesion. Connective Tissue Research, 37 (1-2): 29–51.CrossRefGoogle Scholar
  8. Du, H., Bao, Z., Hou, R., Wang, S., Su, H., Yan, J., Tian, M., Li, Y., Wei, W., and Lu, W., 2012. Transcriptome sequencing and characterization for the sea cucumber Apostichopus japonicus (Selenka, 1867). PLoS One, 7 (3): e33311.CrossRefGoogle Scholar
  9. Fu, X., Sun, Y., Wang, J., Xing, Q., Zou, J., Li, R., Wang, Z., Wang, S., Hu, X., and Zhang, L., 2014. Sequencing-based gene network analysis provides a core set of gene resource for understanding thermal adaptation in Zhikong scallop Chlamys farreri. Molecular Ecology Resources, 14 (1): 184–198.CrossRefGoogle Scholar
  10. Götz, S., García-Gómez, J. M., Terol, J., Williams, T. D., Nagaraj, S. H., Nueda, M. J., Robles, M., Talón, M., Dopazo, J., and Conesa, A., 2008. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Research, 36 (10): 3420–3435.CrossRefGoogle Scholar
  11. Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., and Zeng, Q., 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature biotechnology, 29 (7): 644–652.CrossRefGoogle Scholar
  12. Hou, R., Bao, Z., Wang, S., Su, H., Li, Y., Du, H., Hu, J., Wang, S., and Hu, X., 2011. Transcriptome sequencing and de novo analysis for Yesso scallop (Patinopecten yessoensis) using 454 GS FLX. PLoS One, 6 (6): e21560.CrossRefGoogle Scholar
  13. Hu, X., Bao, Z., Hu, J., Shao, M., Zhang, L., Bi, K., Zhan, A., and Huang, X., 2006. Cloning and characterization of tryptophan 2, 3-dioxygenase gene of Zhikong scallop Chlamys farreri (Jones and Preston 1904). Aquaculture Research, 37 (12): 1187–1194.CrossRefGoogle Scholar
  14. Huan, P., Wang, H., and Liu, B., 2012. Transcriptomic analysis of the clam Meretrix meretrix on different larval stages. Marine Biotechnology, 14 (1): 69–78.CrossRefGoogle Scholar
  15. Johnstone, I. L., 1994. The cuticle of the nematode Caenorhabditis elegans: A complex collagen structure. Bioessays, 16 (3): 171–178.CrossRefGoogle Scholar
  16. Joubert, C., Piquemal, D., Marie, B., Manchon, L., Pierrat, F., Zanellacléon, I., Cochenneclaureau, N., Gueguen, Y., and Montagnani, C., 2010. Transcriptome and proteome analysis of Pinctada margaritifera calcifying mantle and shell: Focus on biomineralization. BMC Genomics, 11: 613.CrossRefGoogle Scholar
  17. Kangas, M., and Shepherd, S. A., 2013. Distribution and feeding of chitons in a boulder habitat at West Island, South Australia. Journal of the Malacological Society of Australia, 6 (3): 101–111.Google Scholar
  18. Kielty, C. M., Baldock, C., Lee, D., Rock, M. J., Ashworth, J. L., and Shuttleworth, C. A., 2002. Fibrillin: From microfibril assembly to biomechanical function. Philosophical Transactions of the Royal Society B Biological Sciences, 357 (1418): 207–217.CrossRefGoogle Scholar
  19. Kielty, C. M., Wess, T. J., Haston, L., Ashworth, J. L., Sherratt, M. J., and Shuttleworth, C. A., 2003. Fibrillin-rich Microfibrils: Elastic Biopolymers of the Extracellular Matrix. Springer, Netherlands, 581–596.Google Scholar
  20. Kinoshita, S., Wang, N., Inoue, H., Maeyama, K., Okamoto, K., Nagai, K., Kondo, H., Hirono, I., Asakawa, S., and Watabe, S., 2011. Deep sequencing of ESTs from nacreous and prismatic layer producing tissues and a screen for novel shell formation-related genes in the pearl oyster. PLoS One, 6 (6): e21238.CrossRefGoogle Scholar
  21. Koboldt, D. C., Zhang, Q., Larson, D. E., Dong, S., Mclellan, M. D., Ling, L., Miller, C. A., Mardis, E. R., Li, D., and Wilson, R. K., 2012. VarScan 2: Somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Research, 22 (3): 568–576.CrossRefGoogle Scholar
  22. Li, H., Ding, G. L., and Li, Y., 2009. PAnnBuilder: An R package for assembling proteomic annotation data. Bioinformatics, 25 (8): 1094–1095.CrossRefGoogle Scholar
  23. Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., and Durbin, R., 2009. The sequence alignment/map format and SAMtools. Bioinformatics, 25 (16): 2078–2079.CrossRefGoogle Scholar
  24. Liu, S., Zhou, Z., Lu, J., Sun, F., Wang, S., Hong, L., Jiang, Y., Kucuktas, H., Kaltenboeck, L., and Peatman, E., 2011. Generation of genome-scale gene-associated SNPs in catfish for the construction of a high-density SNP array. BMC Genomics, 12: 53.CrossRefGoogle Scholar
  25. Miao, Y., Zhang, L., Sun, Y., Jiao, W., Li, Y., Sun, J., Wang, Y., Wang, S., Bao, Z., and Liu, W., 2015. Integration of transcriptomic and proteomic approaches provides a core set of genes for understanding of scallop attachment. Marine Biotechnology, 17 (5): 523–532.CrossRefGoogle Scholar
  26. Milan, M., Coppe, A., Reinhardt, R., Cancela, L. M., Leite, R. B., Saavedra, C., Ciofi, C., Chelazzi, G., Patarnello, T., and Bortoluzzi, S., 2011. Transcriptome sequencing and microarray development for the Manila clam, Ruditapes philippinarum: Genomic tools for environmental monitoring. BMC Genomics, 12: 234.CrossRefGoogle Scholar
  27. Moriya, Y., Itoh, M., Okuda, S., Yoshizawa, A. C., and Kanehisa, M., 2007. KAAS: An automatic genome annotation and pathway reconstruction server. Nucleic Acids Research, 35 (2): 182–185.CrossRefGoogle Scholar
  28. Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L., and Wold, B., 2008. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods, 5 (7): 621–628.CrossRefGoogle Scholar
  29. Pawlicki, J. M., Pease, L. B., Pierce, C. M., Startz, T. P., Zhang, Y., and Smith, A. M., 2004. The effect of molluscan glue proteins on gel mechanics. Journal of Experimental Biology, 207 (7): 1127–1135.CrossRefGoogle Scholar
  30. Perezvilar, J., and Hill, R. L., 1999. The structure and assembly of secreted mucins. Journal of Biological Chemistry, 274 (45): 31751–31754.CrossRefGoogle Scholar
  31. Puchalski, S. S., Eernisse, D. J., and Johnson, C. C., 2008. The effect of sampling bias on the fossil record of chitons (Mollusca, Polyplacophora). American Malacological Bulletin, 25 (1): 87–95.CrossRefGoogle Scholar
  32. Riesgo, A., Andrade, S. C. S., Sharma, P. P., Novo, M., Pérez-Porro, A. R., Vahtera, V., González, V. L., Kawauchi, G. Y., and Giribet, G., 2012. Comparative description of ten transcriptomes of newly sequenced invertebrates and efficiency estimation of genomic sampling in non-model taxa. Frontiers in Zoology, 9: 33.CrossRefGoogle Scholar
  33. Robinson, M. D., McCarthy, D. J., and Smyth, G. K., 2010. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26 (1): 139–140.CrossRefGoogle Scholar
  34. Romkes, M., and Buch, S. C., 2014. Genotyping technologies: Application to biotransformation enzyme genetic polymorphism screening. Methods in Molecular Biology, 1105: 99–115.CrossRefGoogle Scholar
  35. Schwabe, E., 2005. A catalogue of Recent and fossil chitons (Mollusca: Polyplacophora) Addenda. Novapex, 6 (4): 89–105.Google Scholar
  36. Liu, S. K., Zhang, Y., Zhou, Z. C., Waldbieser, G., Sun, F., Lu, G. G., Zhang, J. R., Jiang, Y. L., Zhang, H., Wang, X. L., Rajendran, K. V., Khoo, L., Kucuktas, H., Peatman, E., and Liu, Z. J., 2012. Efficient assembly and annotation of the transcriptome of catfish by RNA-Seq analysis of a doubled haploid homozygote. BMC Genomics, 13: 595.CrossRefGoogle Scholar
  37. Smith, A. M., 2002. The structure and function of adhesive gels from invertebrates. Integrative and Comparative Biology, 42 (6): 1164–1171.CrossRefGoogle Scholar
  38. Smith, A. M., Quick, T. J., and Peter, R. S., 1999. Differences in the composition of adhesive and non-adhesive mucus from the limpet Lottia limatula. The Biological Bulletin, 196 (1): 34–44.CrossRefGoogle Scholar
  39. Stenn, K. S., Madri, J. A., and Roll, F. J., 1979. Migrating epidermis produces AB2 collagen and requires continual collagen synthesis for movement. Nature, 277 (5693): 229–232.CrossRefGoogle Scholar
  40. Treves, K., Traub, W., Weiner, S., and Addadi, L., 2003. Aragonite formation in the chiton (Mollusca) girdle. Helvetica Chimica Acta, 86 (4): 1101–1112.CrossRefGoogle Scholar
  41. Vinther, J., and Nielsen, C., 2005. The early Cambrian Halkieria is a mollusc. Zoologica Scripta, 34 (1): 81–89.CrossRefGoogle Scholar
  42. Waite, J. H., Hansen, D. C., and Little, K. T., 1989. The glue protein of ribbed mussels (Geukensia demissa): A natural adhesive with some features of collagen. Journal of Comparative Physiology B, 159 (5): 517–525.CrossRefGoogle Scholar
  43. Wang, S., Hou, R., Bao, Z., Du, H., He, Y., Su, H., Zhang, Y., Fu, X., Jiao, W., and Li, Y., 2013. Transcriptome sequencing of Zhikong scallop (Chlamys farreri) and comparative transcriptomic analysis with Yesso scallop (Patinopecten yessoensis). PLoS One, 8 (5): e63927.CrossRefGoogle Scholar
  44. Zhou, Z. C., Dong, Y., Sun, H. J., Yang, A. F., Chen, Z., Gao, S., Jiang, J. W., Guan, X. Y., Jiang, B., and Wang, B., 2014. Transcriptome sequencing of sea cucumber (Apostichopus japonicus) and the identification of gene-associated markers. Molecular Ecology Resources, 14 (1): 127–138.CrossRefGoogle Scholar

Copyright information

© Science Press, Ocean University of China and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Huaiqian Dou
    • 1
  • Yan Miao
    • 1
  • Yuli Li
    • 1
  • Yangping Li
    • 1
  • Xiaoting Dai
    • 1
  • Xiaokang Zhang
    • 1
  • Pengyu Liang
    • 1
  • Weizhi Liu
    • 1
    • 2
  • Shi Wang
    • 1
    • 2
  • Zhenmin Bao
    • 1
    • 3
  1. 1.Key Laboratory of Marine Genetics and Breeding of Ministry of EducationOcean University of ChinaQingdaoChina
  2. 2.Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
  3. 3.Laboratory for Marine Fisheries Science and Food Production ProcessesQingdao National Laboratory for Marine Science and TechnologyQingdaoChina

Personalised recommendations