Skip to main content
Log in

α-Glucosidase Inhibitory Activities of Lutein and Zeaxanthin Purified from Green Alga Chlorella ellipsoidea

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

α-Glucosidase inhibitors are used therapeutically to treat type-2 diabetes mellitus. Through a bioassay-guided fractionation technique, three carotenoids, (all-E)-lutein, (all-E)-zeaxanthin and (9-Z)-zeaxanthin, were purified from the green alga Chlorella ellipsoidea, in which (all-E)-lutein and (9-Z)-zeaxanthin had potent α-glucosidase inhibitory activity. IC50 values of (all-E)-lutein and (9-Z)-zeaxanthin were 70 and 53.5 μmol L−1 against Saccharomyces cerevisiae α-glucosidase, respectively, with non-competitive inhibition. In addition, IC50 values of (9-Z)-zeaxanthin against Bacillus stearothermophilus and rat-intestinal α-glucosidase were 805.1 and 671.2 μmol L−1, respectively. The Ki values of (all-E)-lutein and (9-Z)-zeaxanthin against S. cerevisiae α-glucosidase were 78.1 and 16.5 μmol L−1, respectively. Therefore, C. ellipsoidea carotenoids might be utilized as a novel candidate to prevent type-2 diabetes mellitus related disorders in food and medical industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Apostolidis, E., Kwon, Y. I., and Sherry, K., 2006. Potential of select yogurts for diabetes and hypertension management. Journal of Food Biochemistry, 30 (6): 699–717.

    Article  Google Scholar 

  • Bajpai, V. K., Park, Y. H., Na, M., and Kang, S. C., 2015. a-Glucosidase and tyrosinase inhibitory effects of an abietane type diterpenoid taxoquinone from Metasequoia glyptostroboides. BMC Complementary and Alternative Medicine, 15 (1): 84.

    Article  Google Scholar 

  • Bischoff, H., Puls, W., Krause, H. P., Schutt, H., and Thomas, G., 1985. Pharmacological properties of the novel glucosidase inhibitors BAY m 1099 (miglitol) and BAY o 1248. Diabetes Research and Clinical Practice, 1 (Suppl 1): 53.

    Google Scholar 

  • Blanco-Labra, A., and Iturbe-Chiñas, F. A., 1981. Purification and characterization of an a-amylase inhibitor from maise (Zea maize). Journal of Food Biochemistry, 5 (1): 1–17.

    Article  Google Scholar 

  • Cabrera, T., Bae, J. H., Bai, S. C., and Hur, S. B., 2005. Comparison of the nutritional value of Chlorella ellipsoidea and Nannochloris oculata for rotifers and Artemia Nauplii. Journal of Fisheries Science and Technology, 8 (4): 201–206.

    Google Scholar 

  • Cha, K. H., Koo, S. Y., and Lee, D., 2008. Antiproliferative effects of carotenoids extracted from Chlorella ellipsoidea and Chlorella vulgaris on human colon cancer cells. Journal of Agricultural and Food Chemistry, 56 (22): 10521–10526.

    Article  Google Scholar 

  • Coyne, T., Ibiebele, T. I., Baade, P. D., Dobson, A., McClintock, C., Dunn, S., Leonard, D., and Shaw, J., 2005. Diabetes mellitus and serum carotenoids: Findings of a population-based study in queensland, Australia. The American Journal of Clinical Nutrition, 82 (3): 685–693.

    Article  Google Scholar 

  • Dachtler, M., Glaser, T., Kohler, K., and Albert, K., 2001. Combined HPLC-MS and HPLC-NMR on-line coupling for the separation and determination of lutein and zeaxanthin stereoisomers in spinach and in retina. Analytical Chemistry, 73 (3): 667–674.

    Article  Google Scholar 

  • Del Campo, J. A., Rodríguez, H., Moreno, J., Vargas, M. Á., Rivas, J., and Guerrero, M. G., 2004. Accumulation of astaxanthin and lutein in Chlorella zofingiensis (Chlorophyta). Applied Microbiology and Biotechnology, 64 (6): 848–854.

    Article  Google Scholar 

  • Dixon, M., 1953. The determination of enzyme inhibitor constants. The Biochemical Journal, 55 (1): 170–171.

    Article  Google Scholar 

  • Price, N. C., and Stevens, L., 1999. Fundamentals of Enzymology: The Cell and Molecular Biology of Catalytic Proteins. Oxford University Press, Oxford, 227pp.

    Google Scholar 

  • El-Raey, M. A., Ibrahim, G. E., and Eldahshan, O. A., 2013. Lycopene and lutein; A review for their chemistry and medicinal uses. Journal of Pharmacognosy and Phytochemistry, 2 (1): 245–254.

    Google Scholar 

  • Ford, E. S., Will, J. C., Bowman, B. A., and Venkat Narayan, K. V., 1999. Diabetes mellitus and serum carotenoids: Findings from the third National Health and Nutrition Examination Survey. American Journal of Epidemiology, 149 (2): 168–176.

    Article  Google Scholar 

  • Gladu, P. K., Patterson, G. W., Wikfors, G. H., and Smith, B. C., 1995. Sterol, fatty acid, and pigment characteristics of UTEX 2341, a marine eustigmatophyte identified previously as Chlorella minutissima (Chlorophyceae). Journal of Phycology, 31 (5): 774–777.

    Article  Google Scholar 

  • Gouveia, L., Veloso, V., Reis, A., Fernandes, H., Novais, J., and Empis, J., 1996. Evolution of pigment composition in Chlorella vulgaris. Bioresource Technology, 57 (2): 157–159.

    Article  Google Scholar 

  • Guzmán, S., Gato, A., Lamela, M., Freire-Garabal, M., and Calleja, J. M., 2003. Anti-inflammatory and immunomodulatory activities of polysaccharide from Chlorella stigmatophora and Phaeodactylum tricornutum. Phytotherapy Research, 17 (6): 665–670.

    Article  Google Scholar 

  • Hu, C. C., Lin, J. T., Lu, F. J., Chou, F. P., and Yang, D. J., 2008. Determination of carotenoids in Dunaliella salina cultivated in Taiwan and antioxidant capacity of the algal carotenoid extract. Food Chemistry, 109 (2): 439–446.

    Article  Google Scholar 

  • Hu, Q., Pan, B., Xu, J., Sheng, J., and Shi, Y., 2007. Effects of supercritical carbon dioxide extraction conditions on yields and antioxidant activity of Chlorella pyrenoidosa extracts. Journal of Food Engineering, 80 (4): 997–1001.

    Article  Google Scholar 

  • Jimenéz, C., and Pick, U., 1993. Differential reactivity of β-carotene isomers from Dunaliella bardawil toward oxygen radicals. Plant Physiology, 101 (2): 385–390.

    Article  Google Scholar 

  • Kim, K. Y., Nam, K. A., Kurihara, H., and Kim, S. M., 2008. Potent a-glucosidase inhibitors purified from the red alga Grateloupia elliptica. Phytochemistry, 69 (16): 2820–2825.

    Article  Google Scholar 

  • Kimura, A., Lee, J. H., Lee, I. S., Lee, H. S., Park, K. H., Chiba, S., and Kim, D., 2004. Two potent competitive inhibitors discriminating a-glucosidase family I from family II. Carbohydrate Research, 339 (6): 1035–1040.

    Article  Google Scholar 

  • Ko, S. C., Kang, N., Kim, E. A., Kang, M. C., Lee, S. H., Kang, S. M., Lee, J. B., Jeon, B. T., Kim, S. K., Park, S. J., Park, P. J., Jung, W. K., and Kim, D., 2012. A novel angiotensin I -converting enzyme (ACE) inhibitory peptide from a marine Chlorella ellipsoidea and its antihypertensive effect in spontaneously hypertensive rats. Process Biochemistry, 47 (12): 2005–2011.

    Article  Google Scholar 

  • Kumar, D., Kumar, H., Vedasiromoni, J. R., and Pal, B. C., 2012. Bio-assay guided isolation of a-glucosidase inhibitory constituents from Hibiscus mutabilis leaves. Phytochemical Analysis, 23 (5): 421–425.

    Article  Google Scholar 

  • Lebovitz, H. E., 1997. Alpha-glucosidase inhibitors. Endocrinology and Metabolism Clinics of North America, 26 (3): 539–551.

    Article  Google Scholar 

  • Lee, S. H., Kang, H. J., Lee, H. J., Kang, M. H., and Park, Y. K., 2010. Six-week supplementation with Chlorella has favorable impact on antioxidant status in Korean male smokers. Nutrition, 26 (2): 175–183.

    Article  Google Scholar 

  • Lineweaver, H., and Burk, D., 1934. The determination of enzyme dissociation constants. Journal of the American Chemical Society, 56 (3): 658–666.

    Article  Google Scholar 

  • Matsui, T., Tanaka, T., Tamura, S., Toshima, A., Tamaya, K., Miyata, Y., Tanaka, K., and Matsumoto, K., 2007. a-Glucosidase inhibitory profile of catechins and theaflavins. Journal of Agricultural and Food Chemistry, 55 (1): 99–105.

    Article  Google Scholar 

  • Nguyen, T. H., and Kim, S. M., 2015. a-Glucosidase inhibitory activities of fatty acids purified from the internal organ of sea cucumber Stichopus japonicas. Journal of Food Science, 80 (4): H841–H847.

    Article  Google Scholar 

  • Nguyen, T. H., Um, B. H., and Kim, S. M., 2011. Two unsaturated fatty acids with potent a-glucosidase inhibitory activity purified from the body wall of sea cucumber (Stichopus japonicus). Journal of Food Science, 76 (9): H208–H214.

    Article  Google Scholar 

  • Okuda, M., Hasegawa, T., Sonoda, M., Okabe, T., and Tanaka, Y., 1975. The effects of Chlorella on the levels of cholesterol in serum and liver. The Journal of Nutrition and Dietetics, 33 (1): 3–8.

    Article  Google Scholar 

  • Plaza, M., Herrero, M., Cifuentes, A., and Ibáñez, E., 2009. Innovative natural functional ingredients from microalgae. Journal of Agricultural and Food Chemistry, 57 (16): 7159–7170.

    Article  Google Scholar 

  • Qi, J., and Kim, S. M., 2017. Characterization and immunomodulatory activities of polysaccharides extracted from green alga Chlorella ellipsoidea. International Journal of Biological Macromolecules, 95: 106–114.

    Article  Google Scholar 

  • Schmidt, S. L., and Hickey, M. S., 2009. Regulation of insulin action by diet and exercise. Journal of Equine Veterinary Science, 29 (5): 274–284.

    Article  Google Scholar 

  • Shibata, S., Ishihara, C., and Matsumoto, K., 2004. Improved separation method for highly purified lutein from Chlorella powder using jet mill and flash column chromatography on silica gel. Journal of Agricultural and Food Chemistry, 52 (20): 6283–6286.

    Article  Google Scholar 

  • Soontornchaiboon, W., Joo, S. S., and Kim, S. M., 2012. Antiinflammatory effects of violaxanthin isolated from microalga Chlorella ellipsoidea in RAW264.7 macrophages. Biological and Pharmaceutical Bulletin, 35 (7): 1137–1144.

    Article  Google Scholar 

  • Stepnowski, P., Blotevogel, K. H., and Jastorff, B., 2004. Extraction of carotenoid produced during methanol waste biodegradation. International Biodeterioration & Biodegradation, 53 (2): 127–132.

    Article  Google Scholar 

  • Ylönen, K., Alfthan, G., Groop, L., Saloranta, C., Aro, A., Virtanen, S. M., and Botnia Research Group, 2003. Dietary intakes and plasma concentrations of carotenoids and tocopherols in relation to glucose metabolism in subjects at high risk of type 2 diabetes: The botnia dietary study. The American Journal of Clinical Nutrition, 77 (6): 1434–1441.

    Article  Google Scholar 

Download references

Acknowledgements

This research was a part of the project titled ‘Future Marine Technology Development’ funded by the Ministry of Oceans and Fisheries, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Moo Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, J., Kim, S.M. α-Glucosidase Inhibitory Activities of Lutein and Zeaxanthin Purified from Green Alga Chlorella ellipsoidea. J. Ocean Univ. China 17, 983–989 (2018). https://doi.org/10.1007/s11802-018-3465-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-018-3465-2

Key words

Navigation