Skip to main content
Log in

Structures and Evolutions of Explosive Cyclones over the Northwestern and Northeastern Pacific

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

In this study, the structures and evolutions of moderate (MO) explosive cyclones (ECs) over the Northwestern Pacific (NWP) and Northeastern Pacific (NEP) are investigated and compared using composite analysis with cyclone-relative coordinates. Final Operational Global Analysis data gathered during the cold seasons (October–April) of the 15 years from 2000 to 2015 are used. The results indicate that MO NWP ECs have strong baroclinicity and abundant latent heat release at low levels and strong upper-level forcing, which favors explosive cyclogenesis. The rapid development of MO NEP ECs results from their interaction with a northern cyclone and a large middle-level advection of cyclonic vorticity. The structural differences between MO NWP ECs and MO NEP ECs are significant. This results from their specific large-scale atmospheric and oceanic environments. MO NWP ECs usually develop rapidly in the east and southeast of the Japan Islands; the intrusion of cold dry air from the East Asian continent leads to strong baroclinicity, and the Kuroshio/Kuroshio Extension provides abundant latent heat release at low levels. The East Asian subtropical westerly jet stream supplies strong upper-level forcing. While MO NEP ECs mainly occur over the NEP, the low-level baroclinicity, upper-level jet stream, and warm ocean currents are relatively weaker. The merged cyclone associated with a strong middle-level trough transports large cyclonic vorticity to MO NEP ECs, which favors their rapid development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anthes, R. A., Kuo, Y. H., and Gyakum, J. R., 1983. Numerical simulations of a case of explosive marine cyclogenesis. Monthly Weather Review, 111: 1174–1188, DOI: 10.1175/1520-0493(1983)111<1174:NSOACO>2.0.CO;2.

    Article  Google Scholar 

  • Bleck, R., 1974. Short-range prediction in isentropic coordinates with filtered and unfiltered numerical models. Monthly Weather Review, 102: 813–829, DOI: 10.1175/1520-0493(1974)102< 0813:SRPIIC>2.0.CO;2.

    Article  Google Scholar 

  • Bosart, L. F., 1981. The Presidents’ Day snowstorm of 18–19 February 1979: A subsynoptic-scale event. Monthly Weather Review, 109: 1542–1566, DOI: 10.1175/1520-0493(1981)109<1542:TPDSOF>2.0.CO;2.

    Article  Google Scholar 

  • Bosart, L. F., and Lin, S. C., 1984. A diagnostic analysis of the Presidents’ Day storm of February 1979. Monthly Weather Review, 112: 2148–2177, DOI: 10.1175/1520-0493(1984)112< 2148:ADAOTP>2.0.CO;2.

    Article  Google Scholar 

  • Cammas, J. P., and Ramond, D., 1989. Analysis and diagnosis of the composite of ageostrophic circulations in jet-front systems. Monthly Weather Review, 117: 2447–2462, DOI: 10.1175/1520-0493(1989)117<2447:AADOTC>2.0.CO;2.

    Article  Google Scholar 

  • Chen, S. J., Kuo, Y. H., Zhang, P. Z., and Bai, Q. F., 1992. Climatology of explosive cyclones off the East Asian coast. Monthly Weather Review, 120: 3029–3035, DOI: 10.1175/1520-0493(1992)120<3029:COECOT>2.0.CO;2.

    Article  Google Scholar 

  • Chen, T. C., Chang, C. B., and Perkey, D. J., 1983. Numerical study of an AMTEX’75 oceanic cyclone. Monthly Weather Review, 111: 1818–1829, DOI: 10.1175/1520-0493(1983)111< 1818:NSOAAO>2.0.CO;2.

    Article  Google Scholar 

  • Chen, T. C., Chang, C. B., and Perkey, D. J., 1985. Synoptic study of a medium-scale oceanic cyclone during AMTEX’75. Monthly Weather Review, 113: 349–361, DOI: 10.1175/1520-0493(1985)113<0349:SSOAMS>2.0.CO;2.

    Article  Google Scholar 

  • Danielson, R. E., Gyakum, J. R., and Straub, D. N., 2006a. A case study of downstream baroclinic development over the North Pacific Ocean. Part I: Dynamical impacts. Monthly Weather Review, 134: 1534–1548, DOI: 10.1175/MWR3172.1.

    Article  Google Scholar 

  • Danielson, R. E., Gyakum, J. R., and Straub, D. N., 2006b. A case study of downstream baroclinic development over the North Pacific Ocean. Part II: Diagnoses of eddy energy and wave activity. Monthly Weather Review, 134: 1549–1567, DOI: 10.1175/MWR3173.1.

    Article  Google Scholar 

  • Davis, C. A., 1992. Piecewise potential vorticity inversion. Journal of the Atmospheric Sciences, 49: 1397–1411, DOI: 10.1175/1520-0469(1992)049<1397:PPVI>2.0.CO;2.

    Article  Google Scholar 

  • Emanuel, K. A., Fantini, M., and Thorpe, A. J., 1987. Baroclinic instability in an environment of small stability to slantwise moist convection. Part I: Two-dimensional models. Journal of the Atmospheric Sciences, 44: 1559–1573, DOI: 10.1175/1520-0469(1987)044<1559:BIIAEO>2.0.CO;2.

    Google Scholar 

  • Gall, R., 1976. The effects of released latent heat in growing baroclinic waves. Journal of the Atmospheric Sciences, 33: 1686–1701, DOI: 10.1175/1520-0469(1976)033<1686:TEORLH>2.0.CO;2.

    Article  Google Scholar 

  • Gyakum, J. R., 1983a. On the evolution of the QE II storm. I: Synoptic aspects. Monthly Weather Review, 111: 1137–1155, DOI: 10.1175/1520-0493(1983)111<1137:OTEOTI>2.0.CO;2.

    Article  Google Scholar 

  • Gyakum, J. R., 1983b. On the evolution of the QE II storm. II: Dynamic and thermodynamic structure. Monthly Weather Review, 111: 1156–1173, DOI: 10.1175/1520-0493(1983)111< 1156:OTEOTI> 2.0.CO;2.

    Article  Google Scholar 

  • Gyakum, J. R., 1991. Meteorological precursors to the explosive intensification of the QE II storm. Monthly Weather Review, 119: 1105–1131, DOI: 10.1175/1520-0493(1991)119<1105: MPTTEI>2.0.CO;2.

    Article  Google Scholar 

  • Gyakum, J. R., Anderson, J. R., Grumm, R. H., and Gruner, E. L., 1989. North Pacific cold-season surface cyclone activity: 1975–1983. Monthly Weather Review, 117: 1141–1155, DOI: 10.1175/1520-0493(1989)117<1141:NPCSSC>2.0.CO;2.

    Article  Google Scholar 

  • Hirata, H., Kawamura, R., Kato, M., and Shinoda, T., 2015. Influential role of moisture supply from the Kuroshio/Kuroshio Extension in the rapid development of an extratropical cyclone. Monthly Weather Review, 143: 4126–4144, DOI: 10.1175/MWR-D-15-0016.1.

    Article  Google Scholar 

  • Hoskins, B. J., McIntyre, M. E., and Robertson, A. W., 1985. On the use and significance of isentropic potential vorticity maps. Quarterly Journal of the Royal Meteorological Society, 111: 877–946, DOI: 10.1002/qj.49711147002.

    Article  Google Scholar 

  • Iizuka, S., Shiota, M., Kawamura, R., and Hatsushika, H., 2013. Influence of the monsoon variability and sea surface temperature front on the explosive cyclone activity in the vicinity of Japan during northern winter. SOLA, 9: 1–4, DOI: 10.2151/sola.2013-001.

    Article  Google Scholar 

  • Keyser, D., and Shapiro, M. A., 1986. A review of the structure and dynamics of upper-level frontal zones. Monthly Weather Review, 114: 452–499, DOI: 10.1175/1520-0493(1986)114< 0452:AROTSA>2.0.CO;2.

    Article  Google Scholar 

  • Kuwano-Yoshida, A., and Asuma, Y., 2008. Numerical study of explosively developing extratropical cyclones in the Northwestern Pacific region. Monthly Weather Review, 136: 712–740, DOI: 10.1175/2007MWR2111.1.

    Article  Google Scholar 

  • Macdonald, B. C., and Reiter, E. R., 1988. Explosive cyclogenesis over the eastern United States. Monthly Weather Review, 116: 1568–1586, DOI: 10.1175/1520-0493(1988)116< 1568:ECOTEU>2.0.CO;2.

    Article  Google Scholar 

  • Manobianco, J., 1989. Explosive east coast cyclogenesis over the west-central North Atlantic Ocean: A composite study derived from ECMWF operational analyses. Monthly Weather Review, 117: 2365–2383, DOI: 10.1175/1520-0493(1989)117<2365: EECCOT>2.0.CO;2.

    Article  Google Scholar 

  • Mullen, S. L., and Baumhefner, D. P., 1988. Sensitivity of numerical simulations of explosive oceanic cyclogenesis to changes in physical parameterizations. Monthly Weather Review, 116: 2289–2329, DOI: 10.1175/1520-0493(1988)116< 2289:SONSOE>2.0.CO;2.

    Article  Google Scholar 

  • Murty, T., McBean, G., and McKee, B., 1983. Explosive cyclogenesis over the Northeast Pacific Ocean. Monthly Weather Review, 111: 1131–1135, DOI: 10.1175/1520-0493(1983)111.

    Article  Google Scholar 

  • Nakamura, H., 1993. Horizontal divergence associated with zonally isolated jet steams. Journal of the Atmospheric Sciences, 50: 2310–2313, DOI: 10.1175/1520-0469(1993)050< 2310:HDAWZI>2.0.CO;2.

    Article  Google Scholar 

  • Pang, H., and Fu, G., 2017. Case study of potential vorticity tower in three explosive cyclones over Eastern Asia. Journal of the Atmospheric Sciences, 74: 1445–1454, DOI: 10.1175/JAS-D-15-0330.1.

    Article  Google Scholar 

  • Reader, M. C., and Moore, G. W. K., 1995. Stratosphere-troposphere interactions associated with a case of explosive cyclogenesis in the Labrador Sea. Tellus, 47A: 849–863, DOI: 10.3402/tellusa.v47i5.11579.

    Article  Google Scholar 

  • Reed, R. J., and Danielsen, E. F., 1959. Fronts in the vicinity of the tropopause. Archiv für Meteorologie, Geophysik und Bioklimatologie, A11: 1–17.

    Google Scholar 

  • Roebber, P. J., 1984. Statistical analysis and updated climatology of explosive cyclones. Monthly Weather Review, 112: 1577–1589, DOI: 10.1175/1520-0493(1984)112<1577:SAAUCO> 2.0.CO;2.

    Article  Google Scholar 

  • Rogers, E., and Bosart, L. F., 1986. An investigation of explosively deepening oceanic cyclones. Monthly Weather Review, 114: 702–718, DOI: 10.1175/1520-0493(1986)114<0702:AIO EDO>2.0.CO;2.

    Article  Google Scholar 

  • Sanders, F., 1971. Analytic solutions of the nonlinear omega and vorticity equations for a structurally simple model of disturbances in the baroclinic westerlies. Monthly Weather Review, 99: 393–408, DOI: 10.1175/1520-0493(1971)099<0393:ASOTNO>2.3.CO;2.

    Article  Google Scholar 

  • Sanders, F., 1986. Explosive cyclogenesis in the west-central North Atlantic Ocean, 1981–1984. Part I: Composite structure and mean behavior. Monthly Weather Review, 114: 1781–1794, DOI: 10.1175/1520-0493(1986)114<1781:ECITWC>2.0.CO;2.

    Google Scholar 

  • Sanders, F., and Davis, C. A., 1988. Patterns of thickness anomaly for explosive cyclogenesis over the west-central North Atlantic Ocean. Monthly Weather Review, 116: 2725–2730, DOI: 10.1175/1520-0493(1988)116<2725:POTAFE>2.0.CO;2.

    Article  Google Scholar 

  • Sanders, F., and Gyakum, J. R., 1980. Synoptic-dynamic climatology of the ‘bomb’. Monthly Weather Review, 108: 1589–1606, DOI: 10.1175/1520-0493(1980)108<1589:SDCOT>2.0.CO;2.

    Article  Google Scholar 

  • Shapiro, M. A., 1976. The role of turbulent heat flux in the generation of potential vorticity in the vicinity of upper-level jet stream systems. Monthly Weather Review, 104: 892–906, DOI: 10.1175/1520-0493(1976)104<0892:TROTHF>2.0.CO;2.

    Article  Google Scholar 

  • Sinclair, M. R., 1997. Objective identification of cyclones and their circulation intensity, and climatology. Weather and Forecasting, 12: 595–612, DOI: 10.1175/1520-0434(1997)012<0595: OIOCAT>2.0.CO;2.

    Article  Google Scholar 

  • Uccellini, L. W., Keyser, D., Brill, K. F., and Wash, C. H., 1985. The President’s Day cyclone of 18–19 February 1979: Influence of upstream trough amplification and associated tropopause folding on rapid cyclogenesis. Monthly Weather Review, 113: 962–988, DOI: 10.1175/1520-0493(1985)113<0962: TPDCOF>2.0.CO;2.

    Article  Google Scholar 

  • Uccellini, L. W., and Kocin, P. J., 1987. The interaction of jet streak circulations during heavy snow events along the east coast of United States. Weather and Forecasting, 2: 289–308, DOI: 10.1175/1520-0434(1987)002<0289:TIOJSC>2.0.CO;2.

    Article  Google Scholar 

  • Wang, C. C., and Rogers, J. C., 2001. A composite study of explosive cyclogenesis in different sectors of the North Atlantic. Part I: Cyclone structure and evolution. Monthly Weather Review, 129: 1481–1499, DOI: 10.1175/1520-0493(2001)129 <1481:ACSOEC>2.0.CO;2.

    Google Scholar 

  • Warrenfeltz, L. L., and Elsberry, R. L., 1989. Superposition effects in rapid cyclogenesis-Linear model studies. Journal of the Atmospheric Sciences, 46: 789–802, DOI: 10.1175/1520-0469(1989)046<0789:SEIRCM>2.0.CO;2.

    Article  Google Scholar 

  • Wash, C. H., Peak, J. E., Calland, W. E., and Cook, W. A., 1988. Diagnostic study of explosive cyclogenesis during FGGE. Monthly Weather Review, 116: 431–451, DOI: 10.1175/1520-0493(1988)116<0431:DSOECD>2.0.CO;2.

    Article  Google Scholar 

  • Whitaker, J. S., and Davis, C. A., 1994. Cyclogenesis in a saturated environment. Journal of the Atmospheric Sciences, 51: 889–907, DOI: 10.1175/1520-0469(1994)051<0889:CIASE> 2.0.CO;2.

    Article  Google Scholar 

  • Yoshida, A., and Asuma, Y., 2004. Structures and environment of explosively developing extratropical cyclones in the Northwestern Pacific region. Monthly Weather Review, 132: 1121–1142, DOI: 10.1175/1520-0493(2004)132<1121:SAEOED> 2.0.CO;2.

    Article  Google Scholar 

  • Yoshiike, S., and Kawamura, R., 2009. Influence of wintertime large-scale circulation on the explosively developing cyclones over the western North Pacific and their downstream effects. Journal of Geophysical Reasearch, 114: D13110, DOI: 10.1029/2009JD011820

    Article  Google Scholar 

  • Zehnder, J., and Keyser, D., 1991. The influence of interior gradients of potential vorticity on rapid cyclogenesis. Tellus A, 43: 198–212, DOI: 10.3402/tellusa.v43i3.11927.

    Article  Google Scholar 

  • Zhang, S., Fu, G., Lu, C., and Liu, J., 2017. Characteristics of explosive cyclones over the Northern Pacific. Journal of Applied Meteorology and Climatology, 56: 3187–3210, DOI: 10.1175/JAMC-D-16-0330.1.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their thanks to the National Natural Science Foundation of China for financial support (Nos. 41275049 and 41775042). All authors express their sincere thanks to Dr. Huaji Pang in Qingdao Meteorological Bureau, Drs. Pengyuan Li and Jingwu Liu in Department of Marine Meteorology, Ocean University of China, and Dr. Shuai Wang in Department of Physics, Imperial College London, UK for their helpful discussions. Special thanks go to NCEP for providing FNL data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Fu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Fu, G. Structures and Evolutions of Explosive Cyclones over the Northwestern and Northeastern Pacific. J. Ocean Univ. China 17, 581–593 (2018). https://doi.org/10.1007/s11802-018-3418-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-018-3418-9

Key words

Navigation