Skip to main content
Log in

Optimized Design of Spacer in Electrodialyzer Using CFD Simulation Method

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

In this study, the effects of length-width ratio and diversion trench of the spacer on the fluid flow behavior in an electrodialyzer have been investigated through CFD simulation method. The relevant information, including the pressure drop, velocity vector distribution and shear stress distribution, demonstrates the importance of optimized design of the spacer in an electrodialysis process. The results show width of the diversion trench has a great effect on the fluid flow compared with length. Increase of the diversion trench width could strength the fluid flow, but also increase the pressure drop. Secondly, the dead zone of the fluid flow decreases with increase of length-width ratio of the spacer, but the pressure drop increases with the increase of length-width ratio of the spacer. So the appropriate length-width ratio of the space should be moderate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad, A. L., and Lau, K. K., 2006. Impact of different spacer filaments geometries on 2D unsteady hydrodynamics and concentration polarization in spiral wound membrane channel. Journal of Membrane Science, 286 (1): 77–92.

    Article  Google Scholar 

  • Allioux, F. M., He, L., and She, F., 2015. Investigation of hybrid ion-exchange membranes reinforced with non-woven metal meshes for electro-dialysis applications. Separation and Purification Technology, 147 (1): 353–363.

    Article  Google Scholar 

  • Al-Sharif, S., Albeirutty, M., and Cipollina, A., 2013. Modelling flow and heat transfer in spacer-filled membrane distillation channels using open source CFD code. Desalination, 311 (4): 103–112.

    Article  Google Scholar 

  • Balster, J., Pünt, I., and Stamatialis, D. F., 2006. Multi-layer spacer geometries with improved mass transport. Journal of Membrane Science, 282 (1-2): 351–361.

    Article  Google Scholar 

  • Brauns, E., Bossaer, J., and Toye, S., 2012. A study of electrodialysis operating with mixed flow mode. Separation and Purification Technology, 98 (39): 356–365.

    Article  Google Scholar 

  • Bucs, S. S., Linares, R. V., and Marston, J. O., 2015. Experimental and numerical characterization of the water flow in spacer-filled channels of spiral-wound membranes. Water Research, 87 (1): 299–310.

    Article  Google Scholar 

  • Cao, Z., Wiley, D. E., and Fane, A. G., 2001. CFD simulations of net-type turbulence promoters in a narrow channel. Journal of Membrane Science, 185 (2): 157–176.

    Article  Google Scholar 

  • Dendukuri, D., Karode, S. K., and Kumar, A., 2005. Flow visualization through spacer filled channels by computational fluid dynamics-II: Improved feed spacer designs. Journal of Membrane Science, 249 (1): 41–49.

    Article  Google Scholar 

  • Gurreri, L., Tamburini, A., and Cipollina, A., 2015. Flow and mass transfer in spacer-filled channels for reverse Electrodialysis: A CFD parametrical study. Journal Membrane Science, 497 (2): 300–317.

    Google Scholar 

  • Johannink, M., Masilamani, K., and Mhamdi, A., 2015. Predictive pressure drop models for membrane channels with nonwoven and woven spacers. Desalination, 376 (1): 41–54.

    Article  Google Scholar 

  • Karode, S. K., and Kumar, A., 2001. Flow visualization through spacer filled channels by computational fluid dynamics I: Pressure drop and shear rate calculations for flat sheet geometry. Journal of Membrane Science, 193 (1): 69–84.

    Article  Google Scholar 

  • Kodým, R., Vlasák, F., and Šnita, D., 2011. Spatially two-dimensional mathematical model of the flow hydrodynamics in a channel filled with a net-like spacer. Journal of Membrane Science, 368 (1): 171–183.

    Article  Google Scholar 

  • Koutsou, C. P., and Karabelas, A. J., 2015. A novel retentate spacer geometry for improved spiral wound membrane (SWM) module performance. Journal of Membrane Science, 488 (1): 129–142.

    Article  Google Scholar 

  • Koutsou, C. P., Karabelas, A. J., and Kostoglou, M., 2015. Membrane desalination under constant water recovery-The effect of module design parameters on system performance. Separation and Purification Technology, 147 (1): 90–113.

    Article  Google Scholar 

  • Koutsou, C. P., Yiantsios, S. G., and Karabelas, A. J., 2007. Direct numerical simulation of flow in spacer-filled channels: Effect of spacer geometrical characteristics. Journal of Membrane Science, 291 (1-2): 53–69.

    Article  Google Scholar 

  • Li, F., Meindersma, W., and Haan, A. B. D., 2002. Optimization of commercial net spacers in spiral wound membrane module. Journal of Membrane Science, 208 (1): 289–302.

    Article  Google Scholar 

  • Li, H., Bertram, C. D., and Wiley, D., E., 1998. Mechanisms by which pulsatile flow affects cross-flow microfiltration. AIChE Journal, 44 (9): 1950–1961.

    Article  Google Scholar 

  • Li, Y. L., and Tung, K. L., 2008. CFD simulation of fluid flow through spacer-filled membrane module: Selecting suitable cell types for periodic boundary conditions. Desalination, 233 (1): 351–358.

    Article  Google Scholar 

  • Lipnizki, J., and Jonsson, G., 2002. Flow dynamics and concentration polarization in spacer-filled channels. Desalination, 146 (1): 213–217.

    Article  Google Scholar 

  • Sadrzadeh, M., and Mohammadi, T., 2009. Treatment of sea water using electrodialysis: Current efficiency evaluation. Desalination, 249 (1): 279–285.

    Article  Google Scholar 

  • Schwinge, J., Wiley, D. E., and Fane, A. G., 2004. Novel spacer design improves observed flux. Journal of Membrane Science, 229 (1): 53–61.

    Article  Google Scholar 

  • Shakaib, M., Hasani, S. M. F., and Mahmood, M., 2007. Study on the effects of spacer geometry in membrane feed channels using three-dimensional computational flow modeling. Journal of Membrane Science, 297 (1-2): 74–89.

    Article  Google Scholar 

  • Strathmann, H., Kedem, O., and Wilf, M., 2010. Electrodialysis, a mature technology with a multitude of new applications. Desalination, 264 (3): 268–288.

    Article  Google Scholar 

  • Vázquez, L., Alvarez-Gallegos, A., and Sierra, F. Z., 2010. Prediction of mass transport profiles in a laboratory filter-press electrolyser by computational fluid dynamics modelling. Electrochimica Acta, 55 (10): 3446–3453.

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported in part by the National Natural Science Foundation of China (Nos. 21276245 and 21576249) and the Key Research and Development Program of Shan-dong Province (No. 2015GSF117018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuxiang Jia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, Y., Yan, C., Chen, L. et al. Optimized Design of Spacer in Electrodialyzer Using CFD Simulation Method. J. Ocean Univ. China 17, 603–608 (2018). https://doi.org/10.1007/s11802-018-3397-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-018-3397-x

Key words

Navigation