Skip to main content
Log in

Plausible Effect of Weather on Atlantic Meridional Overturning Circulation with a Coupled General Circulation Model

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

The Atlantic meridional overturning circulation (AMOC) is a vital component of the global ocean circulation and the heat engine of the climate system. Through the use of a coupled general circulation model, this study examines the role of synoptic systems on the AMOC and presents evidence that internally generated high-frequency, synoptic-scale weather variability in the atmosphere could play a significant role in maintaining the overall strength and variability of the AMOC, thereby affecting climate variability and change. Results of a novel coupling technique show that the strength and variability of the AMOC are greatly reduced once the synoptic weather variability is suppressed in the coupled model. The strength and variability of the AMOC are closely linked to deep convection events at high latitudes, which could be strongly affected by the weather variability. Our results imply that synoptic weather systems are important in driving the AMOC and its variability. Thus, interactions between atmospheric weather variability and AMOC may be an important feedback mechanism of the global climate system and need to be taken into consideration in future climate change studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beena, B. S., and von Storch, J. S., 2009. Effects of fluctuating daily surface fluxes on the time-mean oceanic circulation. Climate Dynamics, 33 (1): 1–18, DOI: 10.1007/S00382-009-0575-Y.

    Article  Google Scholar 

  • Bengtsson, L., Hodges, K. I., and Keenlyside, N., 2010. Will extratropical storms intensify in a warmer climate? Journal of Climate, 22 (9): 2276–2301, DOI: 10.1175/2008jcli2678.1.

    Article  Google Scholar 

  • Biastoch, A., Boning, C. W., Getzlaff, J., Molines, J. M., and Madec, G., 2008. Causes of interannual-decadal variability in the meridional overturning circulation of the midlatitude North Atlantic Ocean. Journal of Climate, 21 (24): 6599–6615, DOI: 10.1175/2008jcli2404.1.

    Article  Google Scholar 

  • Chang, E. K. M., 2007. Assessing the increasing trend in Northern Hemisphere winter storm track activity using surface ship observations and a statistical storm track model. Journal of Climate, 20 (22): 5607–5628, DOI: 10.1175/2007jcli1596.1.

    Article  Google Scholar 

  • Cunningham, S. A., Kanzow, T., Rayner, D., Baringer, M. O., Johns, W. E., Marotzke, J., Longworth, H. R., Grant, E. M., Hirschi, J. J.-M., Beal, L. M., Meinen, C. S., and Bryden, H. L., 2007. Temporal variability of the Atlantic meridional overturning circulation at 26.5°N. Science, 317 (5840): 935–938.

    Article  Google Scholar 

  • Danabasoglu, G., 2008. On multidecadal variability of the Atlantic meridional overturning circulation in the Community Climate System Model Version 3. Journal of Climate, 21 (21): 5524–5544, DOI: 10.1175/2008jcli2019.1.

    Article  Google Scholar 

  • Delworth, T. L., and Greatbatch, R. J., 2000. Multidecadal thermohaline circulation variability driven by atmospheric surface flux forcing. Journal of Climate, 13 (9): 1481–1495.

    Article  Google Scholar 

  • Kirtman, B. P., Straus, D. M., Min, D., Schneider, E. K., and Siqueira, L., 2009. Toward linking weather and climate in the interactive ensemble NCAR climate model. Geophysical Research Letters, 36: L13705, DOI: 10.1029/2009GL038389.

    Article  Google Scholar 

  • Knight, J. R., Allan, R. J., Folland, C. K., Vellinga, M., and Mann, M. E., 2005. A signature of persistent natural thermohaline circulation cycles in observed climate. Geophysical Research Letters, 32 (20): 242–257, DOI: 10.1029/2005gl024233.

    Article  Google Scholar 

  • Kwon, Y. O., and Frankignoul, C., 2012. Stochastically-driven multidecadal variability of the Atlantic meridional overturning circulation in CCSM3. Climate Dynamics, 38 (5-6): 859–876, DOI: 10.1007/S00382-011-1040-2.

    Article  Google Scholar 

  • Landsea, C. W., Pielke, R. A., Mestas-Nunez, A., and Knaff, J. A., 1999. Atlantic basin hurricanes: Indices of climatic changes. Climatic Change, 42 (1): 89–129.

    Article  Google Scholar 

  • Lozier, M. S., 2010. Deconstructing the conveyor belt. Science, 328 (5985): 1507–1511, DOI: 10.1126/Science.1189250.

    Article  Google Scholar 

  • McManus, J. F., Francois, R., Gherardi, J. M., Keigwin, L. D., and Brown-Leger, S., 2004. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature, 428 (6985): 834–837, DOI: 10.1038/Nature02494.

    Article  Google Scholar 

  • Men, G., Wan, X., and Liu, Z., 2016. Tropical Atlantic climate response to different freshwater input in high latitudes with an ocean-only general circulation model. Journal of Ocean University of China, 15 (5): 751–757.

    Article  Google Scholar 

  • Mu, L., Chen, X. E., Song, J., Huan, L. I., Yan, L. I., and Jiang, X. Y., 2011. Study on mechanism of interdecadal Atlantic thermohaline circulation variability III: Influences of interdecadal variations by ocean-atmosphere elements. Acta Oceanologica Sinica, 33 (4): 19–28 (in Chinese with English abstract).

    Google Scholar 

  • Pickart, R. S., Spall, M. A., Ribergaard, M. H., Moore, G. W. K., and Milliff, R. F., 2003. Deep convection in the Irminger Sea forced by the Greenland tip jet. Nature, 424 (6945): 152–156, DOI: 10.1038/Nature01729.

    Article  Google Scholar 

  • Schmittner, A., Latif, M., and Schneider, B., 2005. Model projections of the North Atlantic thermohaline circulation for the 21st century assessed by observations. Geophysical Research Letters, 32 (136): 170–177.

    Google Scholar 

  • Shaman, J., Samelson, R. M., and Skyllingstad, E., 2010. Airsea fluxes over the Gulf Stream region: Atmospheric controls and trends. Journal of Climate, 23 (23): 2651–2670, DOI: 10.1175/2010jcli3269.1.

    Article  Google Scholar 

  • Sriver, R. L., and Huber, M., 2007. Observational evidence for an ocean heat pump induced by tropical cyclones. Nature, 447 (7144): 577–580, DOI: 10.1038/Nature05785.

    Article  Google Scholar 

  • Srokosz, M. A., and Bryden, H. L., 2015. Observing the Atlantic meridional overturning circulation yields a decade of inevitable surprises. Science, 348 (6241): 1255575.

    Article  Google Scholar 

  • Sutton, R. T., and Hodson, D. L. R., 2005. Atlantic Ocean forcing of North American and European summer climate. Science, 309 (5731): 115–118, DOI: 10.1126/Science.1109496.

    Article  Google Scholar 

  • Våge, K., Pickart, R. S., Thierry, V., Reverdin, G., Lee, C. M., Petrie, B., Agnew, T. A., Wong, A., and Ribergaard, M. H., 2009. Surprising return of deep convection to the subpolar North Atlantic Ocean in winter 2007–2008. Nature Geoscience, 2 (1): 67–72.

    Article  Google Scholar 

  • Wan, X., Chang, P., Saravanan, R., Zhang, R., and Schmidt, M. W., 2009. On the interpretation of Caribbean paleo-temperature reconstructions during the Younger Dryas. Geophysical Research Letters, 36 (2): L02701, DOI: 10.1029/2008GL035805.

    Article  Google Scholar 

  • Wen, C., Chang, P., and Saravanan, R., 2011. Effect of Atlantic meridional overturning circulation on tropical Atlantic variability: A regional coupled model study. Journal of Climate, 24 (13): 3323–3343.

    Article  Google Scholar 

  • Woollings, T., Gregory, J. M., Pinto, J. G., Reyers, M., and Brayshaw, D. J., 2012. Response of the North Atlantic storm track to climate change shaped by ocean-atmosphere coupling. Nature Geoscience, 5 (5): 313–317, DOI: 10.1038/Ngeo1438.

    Article  Google Scholar 

  • Wunsch, C., 2002. What is the thermohaline circulation? Science, 298 (5596): 1179–1181.

    Article  Google Scholar 

  • Yin, J. H., 2005. A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophysical Research Letters, 32 (18): 109–127, DOI: 10.1029/2005gl023684.

    Article  Google Scholar 

Download references

Acknowledgements

This research is funded by the National Natural Science Foundation of China (Nos. 41276013, 41576004, 41776009 and U1406401). The authors thank Dr. P. Chang and Dr. B. Kirtman for the model data and the constructive discussion during the visit at Texas A&M University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuquan Wan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Wan, X. Plausible Effect of Weather on Atlantic Meridional Overturning Circulation with a Coupled General Circulation Model. J. Ocean Univ. China 17, 219–226 (2018). https://doi.org/10.1007/s11802-018-3303-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-018-3303-6

Keywords

Navigation