Advertisement

Journal of Ocean University of China

, Volume 16, Issue 6, pp 991–997 | Cite as

Operational wave now- and forecast in the German Bight as a basis for the assessment of wave-induced hydrodynamic loads on coastal dikes

Article
  • 50 Downloads

Abstract

The knowledge of the wave-induced hydrodynamic loads on coastal dikes including their temporal and spatial resolution on the dike in combination with actual water levels is of crucial importance of any risk-based early warning system. As a basis for the assessment of the wave-induced hydrodynamic loads, an operational wave now- and forecast system is set up that consists of i) available field measurements from the federal and local authorities and ii) data from numerical simulation of waves in the German Bight using the SWAN wave model. In this study, results of the hindcast of deep water wave conditions during the winter storm on 5–6 December, 2013 (German name ‘Xaver’) are shown and compared with available measurements. Moreover field measurements of wave run-up from the local authorities at a sea dike on the German North Sea Island of Pellworm are presented and compared against calculated wave run-up using the EurOtop (2016) approach.

Key words

German Bight North Sea wave forecast Cosmo-Model SWAN hydrodynamic loads wave run-up EurOtop 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The results described in this publication are achieved within the joint research project EarlyDike–Sensor and Risk based Early Warning Systems for Coastal Dikes (No. 03G0847C), funded by the German Ministry of Education and Research (BMBF).

Moreover the authors would like to thank the Local Authorities for Coastal Protection (NLWKN, Norden and LKN-SH), the German Federal Maritime Authority (BSH) and the German Meteorological Service (DWD) for providing the data required for the set-up, assessment and operation of the operational wave model.

References

  1. Baldauf, M., Förstner, J., Klink, S., Reinhardt, T., Schraff, C., Seifert, A., and Stephan, K., 2014. Kurze Beschreibung des Lokal-Modells Kürzestfrist COSMO-DE (LMK) und seiner Datenbanken auf dem Datenserver des DWD. Deutscher Wetterdienst, Geschäftsbereich Forschung und Entwicklung, Offenbach (in German).Google Scholar
  2. Battjes, J. A., and Groenendijk, H. W., 2000. Wave height distributions on shallow foreshores. Coastal Engineering, 40: 161–182, DOI: 10.1016/S0378-3839(00)00007-7.CrossRefGoogle Scholar
  3. Battjes, J. A., and Janssen, J. P. F. M., 1978. Energy loss and set-up due to breaking of random waves. In: 16th International Conference on Coastal Engineering. Hamburg, August 27–September 3, 569–587.Google Scholar
  4. Booij, N., Ris, R. C., and Holthuijsen, L. H., 1999. A third-generation wave model for coastal regions: 1. Model description and validation. Journal of Geophysical Research: Oceans, 104: 7649–7666, DOI: 10.1029/98JC02622.CrossRefGoogle Scholar
  5. Deutschländer, T., Friedrich, K., Haeseler, S., and Lefebvre, C., 2013. Severe storm XAVER across northern Europe from 5 to 7 December 2013, Deutscher Wetterdienst, Offenbach, 19pp.Google Scholar
  6. Doms, G. and Baldauf, M., 2015. A description of the Nonhydrostatic regional COSMO-Model: Part I: Dynamics and numerics. Deutscher Wetterdienst, Offenbach, 164pp.Google Scholar
  7. Doms, G., Förstner, J., Heise, E., Herzog, H.-J., Mironov, D., Raschendorfer, M., Reinhardt, T., Ritter, B., Schrodin, R., Schulz, J.-P., and Vogel, G., 2011. A description of the Nonhydrostatic regional COSMO Model: Part II: Physical parameterization. Deutscher Wetterdienst, Offenbach, 161pp.Google Scholar
  8. EurOtop, 2016. Manual on wave overtopping of sea defences and related structures: An overtopping manual largely based on European research, but for worldwide application. www. overtopping-manual.com.Google Scholar
  9. Fraza, L., 1988. Testing the non-stationary option of the SWAN wave model. Master thesis. Department Hydraulic Engineering, Faculty of Civil Engineering and Geosciences, Delft University of Technology.Google Scholar
  10. Fröhle, P., 2000. Messung und statistische analyse von seegang als eingangsgröße für den entwurf und die bemessung von bauwerken des küstenwasserbaus. Rostocker Berichte aus dem Fachbereich Bauingenieurwesen, Universität Rostock, Rostock (in German).Google Scholar
  11. GEBCO, 2014. General Bathymetric Chart of the Oceans: The GEBCO_2014 Grid. British Oceanographic Data Centre (BODC), Version 20150318, http://www.gebco.net.Google Scholar
  12. Lefebvre, C., 2007. Orkan TILO am 8 und 9. Deutscher Wetterdienst, November 2007 (in German).Google Scholar
  13. Schulz, J.-P., and Schättler, U., 2014. Kurze Beschreibung des Lokal-Modells Europa COSMO-EU (LME) und Seiner Datenbanken auf dem Datenserver des DWD. Geschäftsbereich Forschung und Entwicklung, Deutscher Wetterdienst, Offenbach, 81pp (in German).Google Scholar
  14. Schüttrumpf, H., 2001. Wellenüberlaufströmung an Seedeichen: Experimentelle und theoretische Untersuchungen. PhD thesis. Technische Universität Braunschweig, 127pp (in German).Google Scholar
  15. Steendam, G. J., van der Meer, J. W., van Steeg, P., van Hoven, A., and van der Meer, G., 2014. Simulators as hydraulic test facilities at dikes and other coastal structures. In: 10th ICE Coasts, Marine Structures and Breakwaters Conference. Edinburgh, 18–20 September 2013, ICE Publishing, London, 1356–1365.Google Scholar
  16. The Wamdi Group, 1988. The WAM model–A third generation ocean wave prediction model. Journal of Physical Oceanography, 18: 1775–1810, DOI: 10.1175/1520-0485(1988)018<1775:TWMTGO>2.0.CO;2.CrossRefGoogle Scholar
  17. Tolman, H. L., and Chalikov, D. V., 1994. Development of a third-generation ocean wave model at NOAA-NMC. In: Proceeding of Waves Physical and Numerical Modelling. Vancouver, Canada, 724–733.Google Scholar
  18. Van der Westhuysen, A., 2008. Nonstationary SWAN simulation in the Wadden Sea. Hydraulic Engineering Reports, Deltares (WL), uuid: c4dc7d3c-697e-434c-ad63-4c305a1fd3f8.Google Scholar

Copyright information

© Science Press, Ocean University of China and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Institute of River and Coastal EngineeringHamburg University of TechnologyHamburgGermany

Personalised recommendations