Journal of Ocean University of China

, Volume 16, Issue 6, pp 1109–1114 | Cite as

Freeze concentration of proteins in Antarctic krill wash water

  • Xiangming Qi
  • Jing Xu
  • Kuo Zhao
  • Hui Guo
  • Lei Ma


Water-washing removes fluoride from Antarctic krill but produces large volumes of wash water containing water- soluble proteins and fluoride. The freeze concentration method was tested to determine if it could be used to recover water-soluble proteins while leaving the fluoride in solution. After freezing and thawing the wash water, protein and fluoride contents of the thawed fractions were determined to explore the melting regularity of components in the wash water. The highest concentration factors of protein and fluoride were obtained after 80 min of thawing, such as 1.48 ± 0.06 and 1.35 ± 0.04 times, respectively. The free amino-nitrogen (FAN) content and sodium dodecyl sulfate-polyacrylamide gel electrophoresis pattern results revealed that the highest concentrations of all ingredients were obtained after 80 min of the process. The degree of hydrolysis of all fractions from the thawing process fluctuated in a narrow range around 12% during the entire process, indicating that the thawing order did not change with various proteins or time during the entire thawing course. These results demonstrate that the freeze concentration method can be used to concentrate protein solutions, even those with fluoride. It was concluded that condensation was achieved and no ingredient could be separated, regardless of fluoride, amino acids, or different proteins in the water.

Key words

Antarctic krill freeze concentration wash water protein extraction fluoride 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This study was supported by the Key Research and Development Project of Shandong Province (No. 2015 GSF115005), the Huimin Special Fund of Qingdao Municipal Achievement Transformation Plan (No. 15-9-2-120-NSH), and the National Natural Science Foundation of China (No. 31101380).


  1. Aider, M., and de Halleux, D., 2009. Cryoconcentration technology in the bio-food industry: Principles and applications. LWT -Food Science and Technology, 42 (3): 679–685, DOI: 10.1016/j.lwt.2008.08.013.CrossRefGoogle Scholar
  2. Aider, M., de Halleux, D., and Akbache, A., 2007a. Whey cryoconcentration and impact on its composition. Journal of Food Engineering, 82 (1): 92–102, DOI: 10.1016/j.jfoodeng.2007.01.025.CrossRefGoogle Scholar
  3. Aider, M., de Halleux, D., and Melnikova, I., 2007b. Skim milk whey cryoconcentration and impact on the composition of the concentrated and ice fractions. Food and Bioprocess Technology, 2 (1): 80–88, DOI: 10.1007/s11947-007-0023-0.CrossRefGoogle Scholar
  4. Beier, N., Sego, D., Donahue, R., and Biggar, K., 2012. Laboratory investigation on freeze separation of saline mine waste water. Cold Regions Science & Technology, 7 (6): 239–247, DOI: 10.1016/j.coldregions.2006.12.002.Google Scholar
  5. Claeys, E., Uytterhaegen, L., Buts, B., and Demeyer, D., 1995. Quantification of beef myofibrillar proteins by SDS-PAGE. Meat Science, 39 (2): 177–193, DOI: 10.1016/0309-1740(94)P1819-H.CrossRefGoogle Scholar
  6. Dova, M. I., Petrotos, K. B., and Lazarides, H. N., 2007. On the direct osmotic concentration of liquid foods. Part I: Impact of process parameters on process performance. Journal of Food Engineering, 78 (2): 422–430, DOI: 10.1016/j.jfoodeng.2005.10.010.CrossRefGoogle Scholar
  7. Fogaça, F. H. S., Trinca, L. A., Bombo, Á. J., and Sant'Ana, L. S., 2013. Optimization of the surimi production from mechanically recovered fish meat (MRFM) using response surface methodology. Journal of Food Quality, 36 (3): 209–216, DOI: 10.1111/jfq.12019.CrossRefGoogle Scholar
  8. Fryer, P. J., and Robbins, P. T., 2005. Heat transfer in food processing: Ensuring product quality and safety. Applied Thermal Engineering, 25 (16): 2499–2510, DOI: 10.1016/j.applthermaleng.2004.11.021.CrossRefGoogle Scholar
  9. H-Kittikun, A., Bourneow, C., and Benjakul, S., 2012. Hydrolysis of surimi wastewater for production of transglutaminase by Enterobacter sp. C2361 and Providencia sp. C1112. Food Chemistry, 135 (3): 1183–1191, DOI: 10.1016/j.foodchem.2012.05.044.CrossRefGoogle Scholar
  10. Hamner, W. M., Hamner, P. P., Strand, S. W., and Gilmer, R. W., 1983. Behavior of Antarctic krill, Euphausia superba: Chemoreception, feeding, schooling, and molting. Science, 220 (4595): 433–435, DOI: 10.1126/science.220.4595.433.CrossRefGoogle Scholar
  11. Heldman, D. R., and Hartel, R. W., 1997. Principles of Food Processing. Aspen Publishers, New York, 138pp.Google Scholar
  12. Irshad, A., Sureshkumar, S., Raghunath, B. V., Rajarajan, G., and Kumar, G. M., 2016. Treatment of waste water from meat industry. In: Integrated Waste Management in India. Prashanthi, M., and Sundaram, R., eds., Springer International Publishing, Switzerland, 251–263.CrossRefGoogle Scholar
  13. Kassalainen, G. E., and Williams, S. K. R., 2012. Assessing protein-ultrafiltration membrane interactions using flow fieldflow fractionation. In: Field-Flow Fractionation in Biopolymer Analysis. Williams, S. K. R., and Caldwell, K. D., eds., Springer Vienna, New York, 23–36.CrossRefGoogle Scholar
  14. Khajehei, F., Niakousari, M., Eskandari, M. H., and Sarshar, M., 2015. Production of pomegranate juice concentrate by complete block cryoconcentration process. Journal of Food Process Engineering, 38 (5): 488–498, DOI: 10.1111/jfpe.12179.CrossRefGoogle Scholar
  15. Kruger, N. J., 1996. The Bradford method for protein quantitation. In: The Protein Protocols Handbook. Walker, J. M., ed., Humana Press, New York, 15–20.CrossRefGoogle Scholar
  16. Laemmli, U. K., 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227 (5259): 680–685, DOI: 10.1038/227680a0.CrossRefGoogle Scholar
  17. Lemoine, S., Fournier, T., Kocevar, G., Belloi, A., Ibarrola, D., Sappey-Marinier, D., and Juillard, L., 2014. Dialysis. Proteinenergy wasting, inflammation and oxidative stress. Nephrology Dialysis Transplantation, 29 (suppl 3): 287–303, DOI: 10.1093/ndt/gfu159.CrossRefGoogle Scholar
  18. Lewicki, P. P., 2006. Design of hot air drying for better foods. Trends in Food Science & Technology, 17 (4) 153–163, DOI: 10.1016/j.tifs.2005.10.012.CrossRefGoogle Scholar
  19. Moreno, F. L., Raventós, M., Hernández, E., and Ruiz, Y., 2014. Block freeze-concentration of coffee extract: Effect of freezing and thawing stages on solute recovery and bioactive compounds. Journal of Food Engineering, 120 (1): 158–166, DOI: 10.1016/j.jfoodeng.2013.07.034.CrossRefGoogle Scholar
  20. Morison, K. R., and Hartel, R. W., 2007. Evaporation and freeze concentration. In: Handbook of Food Engineering. Heldman, D. R., and Lund, D. B., eds., CRC Press, New York, 497–550.Google Scholar
  21. Nicol, S., and Endo, Y., 1997. Krill fisheries of the world. FAO Fisheries Technical Paper, Rome, 100pp.Google Scholar
  22. Nicol, S., James, A., and Pitcher, G., 1987. A first record of daytime surface swarming by euphausia lucens in the southern Benguela region. Marine Biology, 94 (1): 7–10, DOI: 10.1007/BF00392893.CrossRefGoogle Scholar
  23. Nilsang, S., Lertsiri, S., Suphantharika, M., and Assavanig, A., 2005. Optimization of enzymatic hydrolysis of fish soluble concentrate by commercial proteases. Journal of Food Engineering, 70 (4): 571–578, DOI: 10.1016/j.jfoodeng.2004.10.011.CrossRefGoogle Scholar
  24. Petzold, G., and Aguilera, J. M., 2013. Centrifugal freeze concentration. Innovative Food Science and Emerging Technologies, 20: 253–258, DOI: 10.1016/j.ifset.2013.05.010.CrossRefGoogle Scholar
  25. Pouliot, Y., Wijers, M. C., Gauthier, S. F., and Nadeau, L., 1999. Fractionation of whey protein hydrolysates using charged uf/nf membranes. Journal of Membrane Science, 158 (1-2): 105–114, DOI: 10.1016/S0376-7388(99)00006-X.CrossRefGoogle Scholar
  26. Qi, X., Liao, E., Wang, L., Lin, H., and Xue, C., 2016. Extracting protein from Antarctic krill (Euphausia superba). Journal of Aquatic Food Product Technology, 25 (4): 597–606, DOI: 10.1080/10498850.2014.904461.CrossRefGoogle Scholar
  27. Sato, K., Yamagishi, T., and Yamauchi, F., 1986. Quantitative analysis of soybean proteins by densitometry on gel electrophoresis. Cereal Chemistry, 63 (6): 493–496.Google Scholar
  28. Soevik, T., and Braekkan, O. R., 1979. Fluoride in Antarctic krill (Euphausia superba) and Atlantic krill (Meganyctiphanes norvegica). Journal of Agricultural & Food Chemistry, 36 (11): 1414–1416, DOI: 10.1139/f79-204.Google Scholar
  29. Tou, J. C., Jaczynski, J., and Chen, Y. C., 2007. Krill for human consumption: Nutritional value and potential health benefits. Nutrition Reviews, 65 (2): 63–77, DOI: 10.1301/nr.2007.feb.63-77.CrossRefGoogle Scholar
  30. Wang, L., Xue, C., Wang, Y., and Yang, B., 2011. Extraction of proteins with low fluoride level from Antarctic krill (Euphausia superba) and their composition analysis. Journal of Agricultural and Food Chemistry, 59 (11): 6108–6112, DOI: 10.1021/jf201009t.CrossRefGoogle Scholar
  31. Wettasinghe, R. C., Zabet-Moghaddam, M., Ritchie, G., and Auld, D. L., 2013. Relative quantitation of ricin in Ricinus communis seeds by image processing. Industrial Crops and Products, 50 (2013): 654–660, DOI: 10.1016/j.indcrop.2013.07.037.CrossRefGoogle Scholar
  32. Yoshitomi, B., Aoki, M., and Oshima, S. I., 2007. Effect of total replacement of dietary fish meal by low fluoride krill (Euphausia superba) meal on growth performance of rainbow trout (Oncorhynchus mykiss) in fresh water. Aquaculture, 266 (1-4): 219–225, DOI: 10.1016/j.aquaculture.2006.12.043.CrossRefGoogle Scholar
  33. Zueva, S. B., Ostrikov, A. N., Ilyina, N. M., De, M. I., and Vegliò, F., 2013. Coagulation processes for treatment of waste water from meat industry. International Journal of Waste Resources, 3 (2): 130, DOI: 10.4172/2252-5211.1000130.Google Scholar

Copyright information

© Science Press, Ocean University of China and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Xiangming Qi
    • 1
  • Jing Xu
    • 1
  • Kuo Zhao
    • 1
  • Hui Guo
    • 1
  • Lei Ma
    • 1
  1. 1.College of Food Science and EngineeringOcean University of ChinaQingdaoP. R. China

Personalised recommendations