Journal of Ocean University of China

, Volume 16, Issue 6, pp 1213–1219 | Cite as

Influence of calcareous deposit on corrosion behavior of Q235 carbon steel with sulfate-reducing bacteria

  • Jie Zhang
  • Xiaolong Li
  • Jiangwei Wang
  • Weichen Xu
  • Jizhou Duan
  • Shougang Chen
  • Baorong Hou
Article
  • 25 Downloads

Abstract

Cathodic protection is a very effective method to protect metals, which can form calcareous deposits on metal surface. Research on the interrelationship between fouling organism and calcareous deposits is very important but very limited, especially sulfate-reducing bacteria (SRB). SRB is a kind of very important fouling organism that causes microbial corrosion of metals. A study of the influence of calcareous deposit on corrosion behavior of Q235 carbon steel in SRB-containing culture medium was carried out using electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) and surface spectroscopy (EDS). The calcareous deposit was formed with good crystallinity and smooth surface under the gradient current density of −30 μA cm−2 in natural seawater for 72 h. Our results can help elucidate the formation of calcareous deposits and reveal the interrelationship between SRB and calcareous deposits under cathodic protection. The results indicate that the corrosion tendency of carbon steel was obviously affected by Sulfate-reducing Bacteria (SRB) metabolic activity and the calcareous deposit formed on the surface of carbon steel under cathodic protection was favourable to reduce the corrosion rate. Calcareous deposits can promote bacterial adhesion before biofilm formation. The results revealed the interaction between biofouling and calcareous deposits, and the anti-corrosion ability was enhanced by a kind of inorganic and organic composite membranes formed by biofilm and calcareous deposits.

Key words

microbiological corrosion sulfate-reducing bacteria calcareous deposit cathodic protection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 41376003 and 41006054) and the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA13040405).

References

  1. Barchiche, C., Deslouis, C., Festy, D., Gil, O., Refait, P., Touzain, S., and Tribollet, B., 2003. Characterization of calcareous deposits in artificial seawater by impedance techniques 3-Deposit of CaCO3 in the presence of Mg(II). Electrochimica Acta, 48: 1645–1654.CrossRefGoogle Scholar
  2. Cao, S., Wang, J., D., Chen, H., S., and Chen, D., R., 2011. Progress of marine biofouling and antifouling technologies. Chinese Science Bulletin, 56: 598–612.CrossRefGoogle Scholar
  3. Chang, X. T., Chen, S. G., Gao, G. H., Yin, Y. S., Cheng, S., and Liu, T., 2009. Electrochemical behavior of microbiologically influenced corrosion on Fe3Al in marine environment. Acta Metallurgica Sinica (English Letters), 22: 313–320.CrossRefGoogle Scholar
  4. Deslouis, C., Falaras, P., Gilc, O., Jeannin, M., Maillot, V., and Tribollet, B., 2006. Influence of clay on calcareous deposit in natural and artificial sea water. Electrochimica Acta, 51: 3173–3180.CrossRefGoogle Scholar
  5. Eashwar, M., Subramanian, G., Palanichamy, S., Rajagopal, G., Madhu, S., and Kamaraj, P., 2009. Cathodic behaviour of stainless steel in coastal Indian seawater: Calcareous deposits overwhelm biofilms. Biofouling, 25: 191–201.CrossRefGoogle Scholar
  6. Enning, D., Venzlaff, H., Garrelfs, J., Dinh, H., T., Meyer, V., Mayrhofer, K., Hassel, A., W., Stratmann, M., and Widdel, F., 2012. Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust. Environmental Microbiology, 14: 1772–1787.CrossRefGoogle Scholar
  7. Gabrielli, C., Keddam, M., Khalil, A., Rosset, R., and Zidoune, M., 1997. Study of calcium carbonate scales by electrochemical impedance spectroscopy. Electrochimica Acta, 42: 1207–1218.CrossRefGoogle Scholar
  8. Ismail, K. M., Jayaraman, A. Wood, T. K., and Earthman, J. C., 1999. The influence of bacteria on the passive film stability of 304 stainless steel. Electrochimica Acta, 44: 4685–4692.CrossRefGoogle Scholar
  9. Liu, F. L., Zhang, J. Sun, C. X., Yu, Z., and Hou, B. R., 2014. The corrosion of two aluminium sacrificial anode alloys in SRB-containing sea mud. Corrosion Science, 83: 375–381.CrossRefGoogle Scholar
  10. Luciana, V. R., Brito, D., Coutinho, R., Eduardoh, S., Cavalcanti, and Benchimol, M., 2007. The influence of macrofouling on the corrosion behaviour of API 5L X65carbon steel. Biofouling, 23: 193–201.CrossRefGoogle Scholar
  11. Moradi, M., Duan, J., Ashassi-Sorkhabi, H., and Luan, X., 2011. De-alloying of 316 stainless steel in the presence of a mixture of metal-oxidizing bacteria. Corrosion Science, 53: 4282–4290.CrossRefGoogle Scholar
  12. Okhrimenko, D. V., Nissenbaum, J., Andersson, M. P., Olsson, M., H. M., and Stipp, S. L. S., 2013. Energies of the adsorption of functional groups to calcium carbonate polymorphs: The importance of −OH and −COOH groups. Langmuir, 35: 11062–11073.CrossRefGoogle Scholar
  13. Refait, P., Jeannin, M., Sabot, R., Antony, H., and Pineau, S., 2015. Corrosion and cathodic protection of carbon steel in the tidal zone: Products, mechanisms and kinetics. Corrosion Science, 90: 375–382.CrossRefGoogle Scholar
  14. Rousseau, C., Baraud, F., Leleyter, L., Jeannin, M., and Gil, O., 2010. Calcareous deposit formed under cathodic protection in the presence of natural marine sediments: A 12 month experiment. Corrosion Science, 52: 2206–2218.CrossRefGoogle Scholar
  15. Santana, R. J. J., Santana, H. F. J., and Gonzalez, J. E., 2006. Comparative study of the behaviour of AISI 304 SS in a natural seawater hopper, in sterile media and with SRB using electrochemical techniques and SEM. Corrosion Science, 48: 1265–1278.CrossRefGoogle Scholar
  16. Sheng, X., Ting, Y. P., and Pehkonen, S. O., 2007. The influence of sulphate-reducing bacteria biofilm on the corrosion of stainless steel AISI 316. Corrosion Science, 49: 2159–176.CrossRefGoogle Scholar
  17. Venzlaff, H., Enning, D., Srinivasan, J., Mayrhofer, K. J. J., Hasse, A. W., Widdel, F., and Stratmann, M., 2013. Accelerated cathodic reaction in microbial corrosion of iron due to direct electron uptake by sulfate-reducing bacteria. Corrosion Science, 66: 88–96.CrossRefGoogle Scholar
  18. Wagner, P., Little, B., Hart, K., Ray, R., Thomas, D., Trzaskoma-Paulette, P., and Lucasb, K., 1996. Environmental fate of sacrificial zinc anodes and influence of a biofilm. International Biodeterioration & Biodegradation, 37: 151–157.CrossRefGoogle Scholar
  19. Wan, Y., Zhang, D., Liu, H. Q., Li, Y. J., and Hou, B. R., 2010. Influence of sulphate-reducing bacteria on environmental parameters and marine corrosion behavior of Q235 steel in aerobic conditiongs. Electrochimica Acta, 55: 1528–1534.CrossRefGoogle Scholar
  20. Wang, J. W., Zhang, J., Chen, S. G., Duan, J. Z., and Hou, B. R., 2015. Influence of calcareous deposit on corrosion behavior of Q235 carbon steel in f/2 culture medium with amphora. Journal of Chinese Society for Corrosion and Protection, 35: 535–542.Google Scholar
  21. Xu, C., Zhang, Y., Cheng, G., and Zhu, W., 2007. Localized corrosion behavior of 316L stainless steel in the presence of sulfate-reducing and iron-oxidizing bacteria. Materials Science and Engineering: A, 443: 235–241.CrossRefGoogle Scholar
  22. Yang, Y., Scantlebury, J. D., and Koroleva, E. V., 2015. A study of calcareous deposits on cathodically protected mild steel in artificial seawater. Metals, 5: 439–456.CrossRefGoogle Scholar
  23. Yuan, S., Liang, B., Zhao, Y., and Pehkonen, S. O., 2013. Surface chemistry and corrosion behaviour of 304 stainless steel in simulated seawater containing inorganic sulphide and sulphate-reducing bacteria. Corroion Science, 74: 353–366.CrossRefGoogle Scholar
  24. Zheng, F. Y., Wen, G. M., Fang, B. F., and Ma, Y. C., 1995. Influence of cathodic polarization mode on the formation of calcareous deposits. Corroion Science, 6: 253–256.Google Scholar
  25. Zhu, Y., Huang, Y., Ma, S., and Zhang, Y., 2008. Hydrogen permeation of 16 Mn steel in sea mud with sulfate reducing bacteria. Corrosion Science and Protection Technology, 20: 118–120.Google Scholar
  26. Zuo, R., Kus, E., Mansfeld, F., and Wood, T. K., 2005. The importance of live biofilms in corrosion protection. Corroion Science, 47: 279–287.CrossRefGoogle Scholar

Copyright information

© Science Press, Ocean University of China and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Jie Zhang
    • 1
  • Xiaolong Li
    • 1
    • 2
  • Jiangwei Wang
    • 1
    • 3
  • Weichen Xu
    • 1
  • Jizhou Duan
    • 1
  • Shougang Chen
    • 3
  • Baorong Hou
    • 1
  1. 1.Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of OceanologyChinese Academy of SciencesQingdaoP. R. China
  2. 2.University of Chinese Academy of SciencesBeijingP. R. China
  3. 3.Institute of Material Science and EngineeringOcean University of ChinaQingdaoP. R. China

Personalised recommendations