Skip to main content
Log in

Polyguluronate sulfate and its oligosaccharides but not heparin promotes FGF19/FGFR1c signaling

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

Fibroblast growth factor 19(FGF19) functions as a hormone by affecting glucose metabolism. FGF19 improves glucose tolerance when overexpressed in mice with impaired glucose tolerance or diabetes. A functional cellular FGF19 receptor consists of FGF receptor (FGFR) and glycosaminoglycan complexed with either α Klotho or β Klotho. Interestingly, in mice with diet-induced diabetes, a single injection of FGF1 is enough to restore blood sugar levels to a healthy range. FGF1 binds heparin with high affinity whereas FGF19 does not, indicating that polysaccharides other than heparin might enhance FGF19/FGFR signaling. Using a FGFs/FGFR1c signaling-dependent BaF3 cell proliferation assay, we discovered that polyguluronate sulfate (PGS) and its oligosaccharides, PGS12 and PGS25, but not polyguluronate (PG), a natural marine polysaccharide, enhanced FGF19/FGFR1c signaling better than that of heparin based on 3H-thymidine incorporation. Interestingly, PGS6, PGS8, PGS10, PGS12, PGS25, and PGS, but not PG, had comparable FGF1/FGFR1c signal-stimulating activity compared to that of heparin. These results indicated that PGS and its oligosaccharides were excellent FGF1/FGFR1c and FGF19/FGFR1c signaling enhancers at cellular level. Since the inexpensive PGS and PGS oligosaccharides can be absorbed through oral route, these seaweed-derived compounds merit further investigation as novel agents for the treatment of type 2 diabetes through enhancing FGF1/FGFR1c and FGF19/FGFR1c signaling in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asada, M., Shinomiya, M., Suzuki, M., Honda, E., Sugimoto, R., Ikekita, M., and Imamura, T., 2009. Glycosaminoglycan affinity of the complete fibroblast growth factor family. Biochimica et Biophysica Acta (BBA)-General Subjects, 1790 (1): 40–48.

    Article  Google Scholar 

  • Donate-Correa, J., Martín-Núñ ez, E., Delgado, N. P., de Fuentes, M. M., Arduan, A. O., Mora-Ferná ndez, C., and Navarro Gonzá lez, J. F., 2016. Implications of fibroblast growth factor/klotho system in glucose metabolism and diabetes. Cytokine & Growth Factor Reviews, 28: 71–77.

    Article  Google Scholar 

  • Dun, Y. L., Zhou, X. L., Guan, H. S., Yu, G.. L., Li, C. X., Hu, T., Zhao, X., Cheng, X. L., He, X. X., and Hao, J. J., 2015. Low molecular weight guluronate prevents tnf-a-induced oxidative damage and mitochondrial dysfunction in c2c12 skeletal muscle cells. Food & Function, 6 (9): 3056–3064.

    Article  Google Scholar 

  • Garciá-Garciá, M. J., and Anderson, K. V., 2003. Essential role of glycosaminoglycans in FGF signaling during mouse gastrulation. Cell, 114 (6): 727–737.

    Article  Google Scholar 

  • Grobe, K., Inatani, M., Pallerla, S. R., Castagnola, J., Yamaguchi, Y., and Esko, J. D., 2005. Cerebral hypoplasia and craniofacial defects in mice lacking heparan sulfate ndst1 gene function. Development, 132 (16): 3777–3786.

    Article  Google Scholar 

  • Jones, S. A., 2012. Physiology of FGF15/19, Endocrine FGFs and klothos. Springer, 171-182.

  • Kir, S., Beddow, S. A., Samuel, V. T., Miller, P., Previs, S. F., Suino-Powell, K., Xu, H. E., Shulman, G. I., Kliewer, S. A., and Mangelsdorf, D. J., 2011. FGF19 as a postprandial, insulin-independent activator of hepatic protein and glycogen synthesis. Science, 331 (6024): 1621–1624.

    Article  Google Scholar 

  • Liekens, S., Leali, D., Neyts, J., Esnouf, R., Rusnati, M., Dell’ Era, P., Maudgal, P. C., de Clercq, E., and Presta, M., 1999. Modulation of fibroblast growth factor-2 receptor binding, signaling, and mitogenic activity by heparinmimicking polysulfonated compounds. Molecular Pharmacology, 56 (1): 204–213.

    Google Scholar 

  • Lin, X., Buff, E. M., Perrimon, N., and Michelson, A. M., 1999. Heparan sulfate proteoglycans are essential for FGF receptor signaling during drosophila embryonic development. Development, 126 (17): 3715–3723.

    Google Scholar 

  • Lin, X., Wei, G., Shi, Z., Dryer, L., Esko, J. D., Wells, D. E., and Matzuk, M. M., 2000. Disruption of gastrulation and heparan sulfate biosynthesis in ext1-deficient mice. Developmental Biology, 224 (2): 299–311.

    Article  Google Scholar 

  • Lu, H., McDowell, L. M., Studelska, D. R., and Zhang, L., 2010. Glycosaminoglycans in human and bovine serum: detection of twenty-four heparan sulfate and chondroitin sulfate motifs including a novel sialic acid-modified chondroitin sulfate linkage hexasaccharide. Glycobiology Insights, 2010 (2): 13–28.

    Google Scholar 

  • Mabeau, S., and Kloareg, B., 1987. Isolation and analysis of the cell walls of brown algae: Fucus spiralis, f. ceranoides, f. vesiculosus, f. serratus, bifurcaria bifurcata and laminaria digitata. Journal of Experimental Botany, 38 (9): 1573–1580.

    Google Scholar 

  • McDowell, L. M., Frazier, B. A., Studelska, D. R., Giljum, K., Chen, J., Liu, J., Yu, K., Ornitz, D. M., and Zhang, L., 2006. Inhibition or activation of apert syndrome FGFR2 (S252w) signaling by specific glycosaminoglycans. Journal of Biological Chemistry, 281 (11): 6924–6930.

    Article  Google Scholar 

  • Nakamura, M., Uehara, Y., Asada, M., Suzuki, M., and Imamura, T., 2013. Sulfated glycosaminoglycan-assisted receptor specificity of human fibroblast growth factor (FGF) 19 signaling in a mouse system is different from that in a human system. Journal of Biomolecular Screening, 18 (3): 321–330.

    Article  Google Scholar 

  • Ornitz, D., Yayon, A., Flanagan, J., Svahn, C., Levi, E., and Leder, P., 1992. Heparin is required for cell-free binding of basic fibroblast growth factor to a soluble receptor and for mitogenesis in whole cells. Molecular and Cellular Biology, 12 (1): 240–247.

    Article  Google Scholar 

  • Ornitz, D. M., and Itoh, N., 2015. The fibroblast growth factor signaling pathway. Wiley Interdisciplinary Reviews: Developmental Biology, 4 (3): 215–266.

    Article  Google Scholar 

  • Potthoff, M. J., Boney-Montoya, J., Choi, M., He, T., Sunny, N. E., Satapati, S., Suino-Powell, K., Xu, H. E., Gerard, R. D., and Finck, B. N., 2011. FGF15/19 regulates hepatic glucose metabolism by inhibiting the creb-pgc-1a pathway. Cell Metabolism, 13 (6): 729–738.

    Article  Google Scholar 

  • Potthoff, M. J., Kliewer, S. A., and Mangelsdorf, D. J., 2012. Endocrine fibroblast growth factors 15/19 and 21: from feast to famine. Genes & Development, 26 (4): 312–324.

    Article  Google Scholar 

  • Rapraeger, A. C., Krufka, A., and Olwin, B. B., 1991. Requirement of heparan sulfate for bFGF-mediated fibroblast growth and myoblast differentiation. Science, 252 (5013): 1705–1708.

    Article  Google Scholar 

  • Schaap, F. G., 2012. Role of fibroblast growth factor 19 in the control of glucose homeostasis. Current Opinion in Clinical Nutrition & Metabolic Care, 15 (4): 386–391.

    Article  Google Scholar 

  • Shworak, N. W., 2001. High-specific-activity 35 s-labeled heparan sulfate prepared from cultured cells. Proteoglycan Protocols, 171: 79–89.

    Article  Google Scholar 

  • Stickens, D., Zak, B. M., Rougier, N., Esko, J. D., and Werb, Z., 2005. Mice deficient in ext2 lack heparan sulfate and develop exostoses. Development, 132 (22): 5055–5068.

    Article  Google Scholar 

  • Suh, J. M., Jonker, J. W., Ahmadian, M., Goetz, R., Lackey, D., Osborn, O., Huang, Z., Liu, W., Yoshihara, E., and van Dijk, T. H., 2014. Endocrinization of FGF1 produces a neomorphic and potent insulin sensitizer. Nature, 513 (7518): 436–439.

    Article  Google Scholar 

  • Suzuki, M., Uehara, Y., Motomura-Matsuzaka, K., Oki, J., Koyama, Y., Kimura, M., Asada, M., Komi-Kuramochi, A., Oka, S., and Imamura, T., 2008. Aklotho is required for fibroblast growth factor (FGF) 21 signaling through FGF receptor (FGFR) 1c and FGFR3c. Molecular Endocrinology, 22 (4): 1006–1014.

    Article  Google Scholar 

  • Tomlinson, E., Fu, L., John, L., Hultgren, B., Huang, X., Renz, M., Stephan, J. P., Tsai, S. P., Powell-Braxton, L., and French, D., 2002. Transgenic mice expressing human fibroblast growth factor-19 display increased metabolic rate and decreased adiposity. Endocrinology, 143 (5): 1741–1747.

    Article  Google Scholar 

  • Wu, J., Zhang, M., Zhang, Y., Zeng, Y., Zhang, L., and Zhao, X., 2016. Anticoagulant and FGF/FGFRsignal activating activities of the heparinoid propylene glycol alginate sodium sulfate and its oligosaccharides. Carbohydrate Polymers, 136: 641–648.

    Article  Google Scholar 

  • Yayon, A., Klagsbrun, M., Esko, J. D., Leder, P., and Ornitz, D. M., 1991. Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell, 64 (4): 841–848.

    Article  Google Scholar 

  • Zeng, Y., Yang, D., Qiu, P., Han, Z., Zeng, P., He, Y., Guo, Z., Xu, L., Cui, Y., and Zhou, Z., 2016. Efficacy of heparinoid pss in treating cardiovascular diseases and beyond-a review of 27 years clinical experiences in China. Clinical & Applied Thrombosis/hemostasis Official Journal of the International Academy of Clinical & Applied Thrombosis/hemostasis, 22 (3): 222–229.

    Article  Google Scholar 

  • Zhang, X., Ibrahimi, O. A., Olsen, S. K., Umemori, H., Mohammadi, M., and Ornitz, D. M., 2006. Receptor specificity of the fibroblast growth factor family the complete mammalian fgf family. Journal of Biological Chemistry, 281 (23): 15694–15700.

    Article  Google Scholar 

  • Zhang, Z., Yu, G., Zhao, X., Liu, H., Guan, H., Lawson, A. M., and Chai, W., 2006. Sequence analysis of alginate-derived oligosaccharides by negative-ion electrospray tandem mass spectrometry. Journal of the American Society for Mass Spectrometry, 17 (4): 621–630.

    Article  Google Scholar 

  • Zhao, X., Yu, G., Guan, H., Yue, N., Zhang, Z., and Li, H., 2007. Preparation of low-molecular-weight polyguluronate sulfate and its anticoagulant and anti-inflammatory activities. Carbohydrate Polymers, 69 (2): 272–279.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (No. 91129706), NSFCShandong Joint Fund (Nos. U1406402 and U1606403), National Key Technology R & D Program of the Ministry of Science and Technology (No. 2013BAB01B02), Taishan Scholar Special Fund of Shandong Province in China (G. Y. and L. Z.), and the Major Science and Technology Projects of Shandong Province (No. 2015 ZDJS04002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guangli Yu or Lijuan Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, Y., Zeng, X., Guo, Z. et al. Polyguluronate sulfate and its oligosaccharides but not heparin promotes FGF19/FGFR1c signaling. J. Ocean Univ. China 16, 532–536 (2017). https://doi.org/10.1007/s11802-017-3195-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-017-3195-x

Key words

Navigation