Skip to main content
Log in

Numerical simulation for accuracy of velocity analysis in small-scale high-resolution marine multichannel seismic technology

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

When used with large energy sparkers, marine multichannel small-scale high-resolution seismic detection technology has a high resolution, high-detection precision, a wide applicable range, and is very flexible. Positive results have been achieved in submarine geological research, particularly in the investigation of marine gas hydrates. However, the amount of traveltime difference information is reduced for the velocity analysis under conditions of a shorter spread length, thus leading to poorer focusing of the velocity spectrum energy group and a lower accuracy of the velocity analysis. It is thus currently debatable whether the velocity analysis accuracy of short-arrangement multichannel seismic detection technology is able to meet the requirements of practical application in natural gas hydrate exploration. Therefore, in this study the bottom boundary of gas hydrates (Bottom Simulating Reflector, BSR) is used to conduct numerical simulation to discuss the accuracy of the velocity analysis related to such technology. Results show that a higher dominant frequency and smaller sampling interval are not only able to improve the seismic resolution, but they also compensate for the defects of the short-arrangement, thereby improving the accuracy of the velocity analysis. In conclusion, the accuracy of the velocity analysis in this small-scale, high-resolution, multi-channel seismic detection technology meets the requirements of natural gas hydrate exploration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Sadi, H., 1980. Digital processing of reflection data. Birkhäuser Basel, 7: 161–204.

    Google Scholar 

  • Anitha, G., Ramana, M. V., Ramprasad, T., Dewangan, P., and Anuradha, M., 2014. Shallow geological environment of Krishna-Godavari offshore, eastern continental margin of India as inferred from the interpretation of high resolution sparker data. Journal of Earth System Science, 123 (2): 329–342.

    Article  Google Scholar 

  • Aurelio, M. A., Taguibao, K. J. L., Cutiongco, E. B., Foronda, J. M., Calucin, Z. M., and Forbes, M. T., 2013. Structural evolution of Bondoc–Burias area (South Luzon, Philippines) from seismic data. Journal of Asian Earth Sciences, 65: 75–85.

    Article  Google Scholar 

  • Bellefleur, G., Duchesne, M. J., Hunter, J., Long, B. F., and Lavoie, D., 2006. Comparison of single-and multichannel high-resolution seismic data for shallow stratigraphy mapping in St. Lawrence River estuary, Quebec. Geological Survey of Canada, Current Research 2006-D2: 1–10.

    Google Scholar 

  • Benites, M., Pavani Alves, D., Santos Maly, M. D. L., and Jovane, L., 2015. Shallow gas occurrence in a Brazilian ría (Saco do Mamanguá, Rio de Janeiro) inferred from highresolution seismic data. Continental Shelf Research, 108: 89–96.

    Article  Google Scholar 

  • Cheng, W. B., Shih, T. Y., Lin, W. Y., Wang, T. K., Liu, C. S., and Wang, Y., 2014. Imaging seismic velocities for hydratebearing sediments using converted waves near Yuan–An Ridge, off southwest Taiwan. Journal of Asian Earth Sciences, 92 (5): 215–223.

    Article  Google Scholar 

  • Cordier, J.-P., 1985. Velocities in Seismic Reflection. Definitions. Principles of Velocity Analysis. Velocities in Reflection Seismology. Springer Netherlands, 3: 47–58.

    Article  Google Scholar 

  • Crutchley, G. J., Pecher, I. A., Gorman, A. R., Henrys, S. A., and Greinert, J., 2010. Seismic imaging of gas conduits beneath seafloor seep sites in a shallow marine gas hydrate province, Hikurangi Margin, New Zealand. Marine Geology, 272 (1–4): 114–126.

    Article  Google Scholar 

  • Cukur, D., Krastel, S., Tomonaga, Y., Ç agatay, M. N., and Meydan, A. F., 2013. Seismic evidence of shallow gas from Lake Van, eastern Turkey. Marine and Petroleum Geology, 48: 341–353.

    Article  Google Scholar 

  • Driussi, O., Maillard, A., Ochoa, D., Lofi, J., Chanier, F., Gaullier, V., Briais, A., Sage, F., Sierro, F., and Garcia, M., 2015. Messinian salinity crisis deposits widespread over the Balearic Promontory: Insights from new high-resolution seismic data. Marine and Petroleum Geology, 66 (1): 41–54.

    Article  Google Scholar 

  • Duchesne, M., Bellefleur, G., Galbraith, M., Kolesar, R., and Kuzmiski, R., 2007. Strategies for waveform processing in sparker data. Marine Geophysical Researches, 28 (2): 153–164.

    Article  Google Scholar 

  • Horozal, S., Lee, G. H., Yi, B. Y., Yoo, D. G., Park, K. P., Lee, H. Y., Kim, W., Kim, H. J., and Lee, K., 2009. Seismic indicators of gas hydrate and associated gas in the Ulleung Basin, East Sea (Japan Sea) and implications of heat flows derived from depths of the bottom-simulating reflector. Marine Geology, 258 (1–4): 126–138.

    Article  Google Scholar 

  • Jones, L., 2013. High frequency enhancement of sparker sub bottom profiles with multichannel reflection processing. ASEG Extended Abstracts, 2013 (1): 1–4.

    Google Scholar 

  • Labaune, C., Tesson, M., and Gensous, B., 2005. Integration of high and very high-resolution seismic reflection profiles to study upper quaternary deposits of a coastal area in the western Gulf of Lions, SWFrance. Marine Geophysical Researches, 26 (2–4): 109–122.

    Article  Google Scholar 

  • Lee, H.-Y., Kim, W., Koo, N.-H., Park, K.-P., Yoo, D.-G., Kang, D.-H., Kim, Y.-G., Seo, G.-S., and Hwang, K.-D., 2014. Resolution analysis of shallow marine seismic data acquired using an airgun and an 8-channel streamer cable. Journal of Applied Geophysics, 105: 203–212.

    Article  Google Scholar 

  • Lee, H.-Y., Park, K.-P., Koo, N.-H., Yoo, D.-G., Kang, D.-H., Kim, Y.-G., Hwang, K.-D., and Kim, J.-C., 2004. Highresolution shallow marine seismic surveys off Busan and Pohang, Korea, using a small-scale multichannel system. Journal of Applied Geophysics, 56 (1): 1–15.

    Article  Google Scholar 

  • Li, L., Liu, H., Zhang, X., Lei, X., and Sha, Z., 2015. BSRs, estimated heat flow, hydrate-related gas volume and their implications for methane seepage and gas hydrate in the Dongsha region, northern South China Sea. Marine and Petroleum Geology, 67: 785–794.

    Article  Google Scholar 

  • Lu, H., Lorenson, T. D., Moudrakovski, I. L., Ripmeester, J. A., Collett, T. S., Hunter, R. B., and Ratcliffe, C. I., 2011. The characteristics of gas hydrates recovered from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope. Marine and Petroleum Geology, 28 (2): 411–418.

    Article  Google Scholar 

  • Lü, Q., Shi, D., Liu, Z., Zhang, Y., Dong, S., and Zhao, J., 2015. Crustal structure and geodynamics of the middle and lower reaches of Yangtze metallogenic belt and neighboring areas: Insights from deep seismic reflection profiling. Journal of Asian Earth Sciences, 114 (4): 704–716.

    Article  Google Scholar 

  • Luo, Y., Peng, J., Li, P., He, J., and Li, L., 2015. Influence of heterogeneous hydrate distribution on the compressional wave velocity of hydrate-bearing sediment specimens. Journal of Natural Gas Science and Engineering, 22: 90–97.

    Article  Google Scholar 

  • Magnúsdóttir, S., Brandsdóttir, B., Driscoll, N., and Detrick, R., 2015. Postglacial tectonic activity within the Skjálfandadjúp Basin, Tjörnes Fracture Zone, offshore northern Iceland, based on high resolution seismic stratigraphy. Marine Geology, 367: 159–170.

    Article  Google Scholar 

  • Mangipudi, V. R., Goli, A., Desa, M., Tammisetti, R., and Dewangan, P., 2014. Synthesis of deep multichannel seismic and high resolution sparker data: Implications for the geological environment of the Krishna-Godavari offshore, Eastern Continental Margin of India. Marine and Petroleum Geology, 58 (3): 339–355.

    Article  Google Scholar 

  • Marsset, T., Marsset, B., Thomas, Y., Cattaneo, A., Thereau, E., Trincardi, F., and Cochonat, P., 2004. Analysis of holocene sedimentary features on the Adriatic shelf from 3D very high resolution seismic data (Triad survey). Marine Geology, 213 (1–4): 73–89.

    Article  Google Scholar 

  • Ramprasad, T., Dewangan, P., Ramana, M. V., Mazumdar, A., Karisiddaiah, S. M., Ramya, E. R., and Sriram, G., 2011. Evidence of slumping/sliding in Krishna–Godavari offshore basin due to gas/fluid movements. Marine and Petroleum Geology, 28 (10): 1806–1816.

    Article  Google Scholar 

  • Riedel, M., Collett, T. S., Kumar, P., Sathe, A. V., and Cook, A., 2010. Seismic imaging of a fractured gas hydrate system in the Krishna-Godavari Basin offshore India. Marine and Petroleum Geology, 27 (7): 1476–1493.

    Article  Google Scholar 

  • Riedel, M., Goldberg, D., and Guerin, G., 2014. Compressional and shear-wave velocities from gas hydrate bearing sediments: Examples from the India and Cascadia margins as well as Arctic permafrost regions. Marine and Petroleum Geology, 58 (A): 292–320.

    Article  Google Scholar 

  • Rodrigo, C., Vera, E., and González-Fernández, A., 2009. Seismic analysis and distribution of a bottom-simulating reflector (BSR) in the Chilean margin offshore of Valdivia (40°S). Journal of South American Earth Sciences, 27 (1): 1–10.

    Article  Google Scholar 

  • Salah, M., Sahin, S., and Destici, C., 2008. Seismic velocity and Poisson’s ratio tomography of the crust beneath southwest Anatolia: An insight into the occurrence of large earthquakes. Journal of Seismology, 12 (3): 451–451.

    Article  Google Scholar 

  • Schlesinger, A., Cullen, J., Spence, G., Hyndman, R., Louden, K., and Mosher, D., 2012. Seismic velocities on the Nova Scotian margin to estimate gas hydrate and free gas concentrations. Marine and Petroleum Geology, 35 (1): 105–115.

    Article  Google Scholar 

  • Shankar, U., Sain, K., and Riedel, M., 2014. Assessment of gas hydrate stability zone and geothermal modeling of BSR in the Andaman Sea. Journal of Asian Earth Sciences, 79 (A): 358–365.

    Article  Google Scholar 

  • Shipley, T. H., Houston, M. H., Buffler, R. T., Shaub, F. J., Mcmillen, K. J., Ladd, J. W., and Worzel, J. L., 1979. Seismic evidence for widespread possible gas hydrate horizons on continental slopes and rises. American Association of Petroleum Geologists Bulletin, 63 (12): 2204–2213.

    Google Scholar 

  • Sliter, R. W., Triezenberg, P. J., Hart, P. E., Watt, J. T., Johnson, S. Y., and Scheirer, D. S., 2009. High-resolution seismicreflection and marine magnetic data along the Hosgri Fault Zone, Central California. Open-File Report.

    Google Scholar 

  • Wang, S., Liu, B., Zhang, J., Liu, B., Duan, Y., Song, X., Deng, X., Ma, C., and Zang, Y., 2015. Study on the velocity structure of the crust in Southwest Yunnan of the north-south seismic belt–Results from the Menghai-Gengma-Lushui deep seismic sounding profile. Science China Earth Sciences, 58 (12): 2175–2187.

    Article  Google Scholar 

  • Yoo, D. G., Kang, N. K., Yi, B. Y., Kim, G. Y., Ryu, B. J., Lee, K., Lee, G. H., and Riedel, M., 2013. Occurrence and seismic characteristics of gas hydrate in the Ulleung Basin, East Sea. Marine and Petroleum Geology, 47 (11): 236–247.

    Article  Google Scholar 

  • Yoo, D.-G., Koo, N.-H., Lee, H.-Y., Kim, B.-Y., Kim, Y.-J., and Cheong, S., 2015. Acquisition, processing and interpretation of high-resolution seismic data using a small-scale multichannel system: An example from the Korea Strait inner shelf, south-east Korea. Exploration Geophysics, 47: 341–351.

    Google Scholar 

  • Yu, S., 1993. High Resolution Seismic Exploration. Petroleum Industry Press, Beijing, 111–117 (in Chinese).

    Google Scholar 

  • Yu, S., and Cai, X., 1998. Frequency multiplication and velocity analysis. China offshore Oil and Gas (Geology), 12 (5): 342–345 (in Chinese).

    Google Scholar 

  • Zhu, J., Qiu, X., Kopp, H., Xu, H., Sun, Z., Ruan, A., Sun, J., and Wei, X., 2012. Shallow anatomy of a continent-ocean transition zone in the northern South China Sea from multichannel seismic data. Tectonophysics, 554-557: 18–29.

    Article  Google Scholar 

Download references

Acknowledgements

This study is financially supported by the National Scientific Foundation of China (Grant no. 41506085), the Open Foundation of the Key Laboratory of Gas Hydrate, Ministry of Land and Resources, China (Grant no. SHW [2014]-DX-12), and the China Geological Survey Project (Grant no. DD20160213).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Cai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, D., Cai, F. & Wu, Z. Numerical simulation for accuracy of velocity analysis in small-scale high-resolution marine multichannel seismic technology. J. Ocean Univ. China 16, 370–382 (2017). https://doi.org/10.1007/s11802-017-3145-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-017-3145-7

Key words

Navigation