Skip to main content
Log in

Characterization of bacterial communities associating with larval development of Yesso Scallop (Patinopecten yessoensisis Jay, 1857) by high-throughput sequencing

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

Bacterial community presumably plays an essential role in inhibiting pathogen colonization and maintaining the health of scallop larvae, but limiting data are available for Yesso scallop (Patinopecten yessoensisis Jay, 1857) larval development stages. The aim of this study was to characterize and compare the bacterial communities associating with Yesso scallop larval development at fertilized egg S1, trochophora S2, D-shaped larvae S3, umbo larvae S4, and juvenile scallop S5 stages by Illumina high-throughput sequencing. Genomic DNA was extracted from the larvae and their associating bactera, and a gene segment covering V3-V4 region of 16S rRNA gene was amplified and sequenced using an Illumina Miseq sequencer. Overall, 106760 qualified sequences with an average length of 449 bp were obtained. Sequences were compared with those retrieved from 16S rRNA gene databases, and 4 phyla, 7 classes, 15 orders, 21 families, 31 genera were identified. Proteobacteria was predominant phylum, accounting for more than 99%, at all 5 larval development stages. At genus level, Pseudomonas was dominant at stages S1 (80.60%), S2 (87.77%) and S5 (68.71%), followed by Photobacterium (17.06%) and Aeromonas (1.64%) at stage S1, Serratia (6.94%), Stenotrophomonas (3.08%) and Acinetobacter (1.2%) at stage S2, Shewanella (25.95%) and Pseudoalteromonas (4.57%) at stage S5. Moreover, genus Pseudoalteromonas became dominant at stages S3 (44.85%) and S4 (56.02%), followed by Photobacterium (29.82%), Pseudomonas (11.86%), Aliivibrio (8.60%) and Shewanella (3.39%) at stage S3, Pseudomonas (18.16%), Aliivibrio (14.29%), Shewanella (4.11%), Psychromonas (4.04%) and Psychrobacter (1.81%) at stage S4. From the results, we concluded that the bacterial community changed significantly at different development stages of Yesso Scallop larvae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amato, K. R., Yeoman, C. J., Kent, A., Righini, N., Carbonero, F., Estrada, A., Gaskins, H. R., Stumpf, R. M., Yildirim, S., Torralba, M., Gillis, M., Wilson, B. A., Nelson, K. E., White, B. A., and Leigh, S. R., 2013. Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes. The ISME Journal, 7: 1344–5313.

    Article  Google Scholar 

  • Angly, F. E., Felts, B., Breitbart, M., Salamon, P., Edwards, R. A., Carlson, C., Chan, A. M., Haynes, M., Kelley, S., Liu, H., Mahaffy, J. M., Mueller, J. E., Nulton, J., Olson, R., Parsons, R., Rayhawk, S., Suttle, C. A., and Rohwer, F., 2006. The marine viromes of four oceanic regions. PLOS Biology, 4: e368.

    Article  Google Scholar 

  • Bourouni, O. C., Bour, M. E., Mraouna, R., Abdennaceur, H., and Boudabous, A., 2007. Preliminary selection study of potential probiotic bacteria from aquacultural area in tunisia. Annals of Microbiology, 57: 185–190.

    Article  Google Scholar 

  • Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., Fierer, N., Peña, A. G., Goodrich, J. K., Gordon, J. I., Huttley, G. A., Kelley, S. T., Knights, D., Koenig J. E., Ley, R. E., Lozupone, C. A., McDonald, D., Muegge, B. D., Pirrung, M., Reeder, J., Sevinsky, J. R., Turnbaugh, P. J., Walters, W. A., Widmann, J., Yatsunenko, T., Zaneveld, J., and Knight, R., 2010. QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7: 335–336.

    Article  Google Scholar 

  • Desnues, C., Rodriguez-Brito, B., Rayhawk, S., Kelley, S., Tran, T., Haynes, M., Liu, H., Furlan, M., Wegley, L., Chau, B., Ruan, Y. J., Hall, D., Angly, F. E., Edwards, R. A., Li, L. L., Thurber, R. V., Reid, R. P., Siefert, J., Souza, V., Valentine, D. L., Swan, B. K., Breitbart, M., and Rohwer, F., 2008. Biodiversity and biogeography of phages in modern stromalites and thrombolites. Nature, 452: 340–345.

    Article  Google Scholar 

  • Ding, J., Dou, Y., Xu, G. R., Wang, Y. N., and Chang, Y. Q., 2014. Bacterial diversity in the mantle of Patinopecten yessoensis revealed by 454 pyrosequencing. Chinese Journal of Applied Ecology, 25: 3344–3328 (in Chinese with English abstract).

    Google Scholar 

  • Edgar, R. C., 2013. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nature Methods, 10: 996–998.

    Article  Google Scholar 

  • Edgar, R. C., Haas B. J., Clemente J. C., Quince, C., and Knight, R., 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics, 27: 2194–2200.

    Article  Google Scholar 

  • Galand, P. E., Casamayor, E. O., Kirchman D. L., and Lovejoy, C., 2009. Ecology of the rare microbial biosphere of the Arctic Ocean. Proceedings of the National Academy of Sciences of the United States of America, 106: 22427–22432.

    Article  Google Scholar 

  • Gilbert, J. A, Field, D., Swift, P., Thomas, S., Cummings, D., Temperton, B., Weynberg, K., Huse, S., Hughes, M., Joint, I., Somerfield, P. J., and Mühling, M., 2010. The taxonomic and functional diversity of microbes at a temperate coastal site: A ‘multi-omic’ study of seasonal and diel temporal variation. PLoS One, 5: e15545.

    Article  Google Scholar 

  • Gilbert, J. A., Steele, J. A., Caporaso, J. G., Steinbrü ck, L., Reeder, J., Temperton, B., Huse, S., McHardy, A. C., Knight, R., Joint, I., Somerfield, P., Fuhrman, J. A., and Field, D., 2012. Defining seasonal marine microbial community dynamics. ISME Journal, 6: 298–308.

    Article  Google Scholar 

  • Godoy, F. A., Espinoza, M., Wittwer, G., Uriarte, I., and Aranda, C., 2011. Characterization of culturable bacteria in larval cultures of the Chilean scallop Argopecten purpuratus. Ciencias Marinas, 37: 339–348.

    Article  Google Scholar 

  • Gomez-Gil, B., Roque, A., Rotllant, G., Peinado, L., Romalde, J. L., Doce, A., Cabanillas-Beltrá n, H., Chimetto, L. A., and Thompson, F. L., 2011. Photobacterium swingsii sp. nov., isolated from marine organisms. International Journal of Systematic and Evolutionary Microbiology, 61: 315–319.

    Article  Google Scholar 

  • Hidalgo, R. B., Cleenwerck, I., Balboa, S., De Wachter, M., Thompson, F. L., Swings, J., De Vos, P., and Romalde, J. L., 2008. Diversity of vibrios associated with reared clams in Galicia (NW Spain). Systematic and Applied Microbiology, 31: 215–222.

    Article  Google Scholar 

  • Huber, J. A., Welch, D. M., Morrison, H. G., Huse, S. M., Neal, P. R., Butterfield, D. A., and Sogin, M. L., 2007. Microbial population structures in the deep marine biosphere. Science, 318: 97–100.

    Article  Google Scholar 

  • Kesarcodi-Watson, A., Miner, P., Nicolas, J. L., and Robert, R., 2012. Protective effect of four potential probiotics against pathogen-challenge of the larvae of three bivalves: Pacific oyster (Crassostrea gigas), flat oyster (Ostrea edulis) and scallop (Pecten maximus). Aquaculture, 344: 29–34.

    Article  Google Scholar 

  • Kueh, C. S. W., and Chan, K. Y., 1985. Bacteria in bivalve shellfish with special reference to the oyster. Journal of Applied Bacteriology, 59: 41–47.

    Article  Google Scholar 

  • Lambert, C., Nicolas, J. L., Cilia, V., and Corre, S., 1998. Vibrio pectenicida sp. nov., a pathogen of scallop (Pecten maximus) larvae. International Journal of Systematic Bacteriology, 48: 481–487.

    Article  Google Scholar 

  • Lane, D. J., 1991. 16S/23S rRNA sequencing. In: Nucleic Acid Techniques in Bacterial Systematic. Stackebrandt, E., and Goodfellow, M. D., eds., John Wiley and Sons Press, Chichester, 115–175.

    Google Scholar 

  • Lasa, A., Mira, A., Camelo-Castillo, A., Belda-Ferre, P., and Romalde, J. L., 2014. Analysis of the scallop microbiota by means of 16S rRNA gene pyrosequencing. Frontier Marine Science Conference Abstract: IMMR/International Meeting on Marine Research 2014, DOI: 10.3389/conf.FMARS.2014.02.00112.

    Google Scholar 

  • Liang, B., Luo, M., Scott-Herridge, J., Semeniuk, C., Mendoza, M., Capina, R., Sheardown, B., Ji, H., Kimani, J., Ball, B. T., Van Domselaar, G., Graham, M., Tyler, S., Jones, S. J., and Plummer, F. A., 2011. A comparison of parallel pyrosequencing and Sanger clone-based sequencing and its impact on the characterization of the genetic diversity of HIV-1. PLoS One, 6: e26745.

    Article  Google Scholar 

  • Liu, J. C., Sun, X. Y., Li M., Zhang, C. Y., Cao, S. Q., and Ma, Y. X., 2015. Vibrio infections associated with Yesso scallop (Patinopecten yessoensis) larval culture. Journal of Shellfish Research, 34: 213–216.

    Article  Google Scholar 

  • McBain, A. J., Bartolo, R. G., Catrenich, C. E., Charbonneau, D., Ledder, R. G., Rickard, A. H., Symmons, S. A., and Gilbert, P., 2003. Microbial characterization of biofilms in domestic drains and the establishment of stable biofilm microcosms. Applied and Environmental Microbiology, 69: 177–185.

    Article  Google Scholar 

  • Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., and Glöckner, F. O., 2013. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Research, 41: 590–596.

    Article  Google Scholar 

  • Riquelme, C. E., Araya, R., Vergara, N., Rojas, A., Guaita, M., and Candia, M., 1997. Potential probiotic strains in the culture of the Chilean scallop Argopecten purpuratus (Lamarck, 1819). Aquaculture, 154: 17–26.

    Article  Google Scholar 

  • Riquelme, C. E., Chavez, P., Morales, Y., and Hayashida, G., 1994. Evidence for parental bacterial transfer to larvae in Argopecten purpuratus (Lamarck, 1819). Biological Research, 27: 129–134.

    Google Scholar 

  • Riquelme, C. E., Hayashida, G., Araya, R., Uchida, A., Satomi, M., and Ishida, Y., 1996. Isolation of a native bacterial strain from the scallop Argopecten purpuratus with inhibitory effects against pathogenic vibrios. Journal of Shellfish Research, 15: 369–374.

    Google Scholar 

  • Riquelme, C. E., Jorquera, M. A., Rosas, A. I., Avendaño, R. E., and Reyes, N., 2001. Addition of inhibitor-producing bacteria to mass cultures of Argopecten purpuratus larvae (Lamarck, 1819). Aquaculture, 192: 111–119.

    Article  Google Scholar 

  • Riquelme, C., Hayashida, G., Toranzo, A. E., Vilches, J., and Chavez, P., 1995. Pathogenicity studies of a Vibrio anguillarum related (VAR) strain causing an epizootic in Argopecten purpuratus larvae cultured in Chile. Diseases of Aquatic Organisms, 22: 135–141.

    Article  Google Scholar 

  • Romalde, J. L., Diéguez, A. L., Doce, A., Lasa, A., Balboa, S., Ló pez, C., and Beaz-Hidalgo, R., 2013. Advances in the knowledge of the microbiota associated with clams from natural beds. Clam Fisheries and Aquaculture, 163-190.

  • Sandaa, R. A., Magnesen, T., Torkildsen, L., and Bergh, Ø., 2003. Characterisation of the bacterial community associated with early stages of Great scallop, using denaturing gradient gel electrophoresis (DGGE). Systematic and Applied Microbiology, 26: 302–311.

    Article  Google Scholar 

  • Schulze, A. D., Alabi, A. O., Tattersall-Sheldrake, A. R., and Miller, K. M., 2006. Bacterial diversity in a marine hatchery: Balance between pathogenic and potentially probiotic bacterial strains. Aquaculture, 256: 50–73.

    Article  Google Scholar 

  • Shendure, J., and Ji, H., 2008. Next-generation DNA sequencing. Nature Biotechnology, 26: 1135–1145.

    Article  Google Scholar 

  • Torkildsen, L., Lambert, C., Nylund, A., Magnesen, T., and Bergh, Ø., 2005. Bacteria associated with early life stages of the Great scallop, Pecten maximus: Impact on larval survival. Aquaculture International, 13: 575–592.

    Article  Google Scholar 

  • Trabal, N., Mazón-Suástegui, J. M., Vázquez-Juárez, R., Asencio-Valle, F., Morales-Bojórquez, E., and Romero, J., 2012. Molecular analysis of bacterial microbiota associated with oysters (Crassostrea gigas and Crassostrea corteziensis) in different growth phases at two cultivation sites. Microbial Ecology, 64: 555–569.

    Article  Google Scholar 

  • Wang, Q., Garrity, G. M., Tiedje, J. M., and Cole, J. R., 2007. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology, 73: 5261–5267.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuexin Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Liu, J., Li, M. et al. Characterization of bacterial communities associating with larval development of Yesso Scallop (Patinopecten yessoensisis Jay, 1857) by high-throughput sequencing. J. Ocean Univ. China 15, 1067–1072 (2016). https://doi.org/10.1007/s11802-016-3092-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-016-3092-8

Keywords

Navigation