Skip to main content
Log in

Computational determination of the binding mode of α-conotoxin to nicotinic acetylcholine receptor

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

Conotoxins belong to the large families of disulfide-rich peptide toxins from cone snail venom, and can act on a broad spectrum of ion channels and receptors. They are classified into different subtypes based on their targets. The α-conotoxins selectively inhibit the current of the nicotinic acetylcholine receptors. Because of their unique selectivity towards distinct nAChR subtypes, α-conotoxins become valuable tools in nAChR study. In addition to the X-ray structures of α-conotoxins in complex with acetylcholine-binding protein, a homolog of the nAChR ligand-binding domain, the high-resolution crystal structures of the extracellular domain of the α1 and α9 subunits are also obtained. Such structures not only revealed the details of the configuration of nAChR, but also provided higher sequence identity templates for modeling the binding modes of α-conotoxins to nAChR. This mini-review summarizes recent modeling studies for the determination of the binding modes of α-conotoxins to nAChR. As there are not crystal structures of the nAChR in complex with conotoxins, computational modeling in combination of mutagenesis data is expected to reveal the molecular recognition mechanisms that govern the interactions between α-conotoxins and nAChR at molecular level. An accurate determination of the binding modes of α-conotoxins on AChRs allows rational design of α-conotoxin analogues with improved potency or selectivity to nAChRs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, D. J., Alewood, P. F., Craik, D. J., Drinkwater, R. D., and Lewis, R. J., 1999. Conotoxins and their potential pharmaceutical applications. Drug Development Research, 46: 219–234.

    Article  Google Scholar 

  • Arneric, S. P., Holladay, M., and Williams, M., 2007. Neuronal nicotinic receptors: A perspective on two decades of drug discovery research. Biochemical Pharmacology, 74: 1092–1101.

    Article  Google Scholar 

  • Azam, L., Papakyriakou, A., Zouridakis, M., Giastas, P., Tzartos, S. J., and McIntosh, J. M., 2015. Molecular interaction of a-conotoxinRgIA with the rat a9a10 nicotinic acetylcholine receptor. Molecular Pharmacology, 87: 855–864.

    Article  Google Scholar 

  • Beißsner, M., Dutertre, S. B., Schemm, R., Danker, T., Sporning, A., Ller, H. G., and Nicke, A., 2012. Efficient binding of 4/7 a-Conotoxins to nicotinic a4ß2 receptors is prevented by Arg185 and Pro195 in the a4 Subunit. Molecular Pharmacology, 82: 711–718.

    Article  Google Scholar 

  • Brejc, K., van Dijk, W. J., Klaassen, R. V., Schuurmans, M., van Der Oost, J., Smit, A. B., and Sixma, T. K., 2001. Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature, 411: 269–276.

    Article  Google Scholar 

  • Celie, P. H. N., Kasheverov, I. E., Mordvintsev, D. Y., Hogg, R. C., van Nierop, P., van Elk, R., van Rossum-Fikkert, S. E., Zhmak, M. N., Bertrand, D., Tsetlin, V., Sixma, T. K., and Smit, A. B., 2005. Crystal structure of nicotinic acetylcholine receptor homolog AChBP in complex with an alphaconotoxinPnIA variant. Nature Structural & Molecular Biology, 12: 582–588.

    Article  Google Scholar 

  • Chi, S. W., Kim, D. H., Olivera, B. M., McIntosh, J. M., and Han, K. H., 2006. NMR structure determination of a-conotoxinBuIA, a novel neuronal nicotinic acetylcholine receptor antagonist with an unusual 4/4 disulfide scaffold. Biochemical and Biophysical Research Communications, 349: 1228–1234.

    Article  Google Scholar 

  • Colomer, C., Olivos-Oré, L. A., Vincent, A., McIntosh, J. M., Artalejo, A. R., and Guérineau, N. C., 2010. Functional characterization of alpha 9-containing cholinergic nicotinic receptors in the rat adrenal medulla: implication in stress-induced functional plasticity. Journal of Neuroscience, 30: 6732–6742.

    Article  Google Scholar 

  • Craik, D. J., and Adams, D. J., 2007. Chemical modification of conotoxins to improve stability and activity. ACS Chemical Biology, 2: 457–468.

    Article  Google Scholar 

  • Dellisanti, C. D., Yao, Y., Stroud, J. C., Wang, Z. Z., and Chen, L., 2007. Crystal structure of the extracellular domain of nAChR alpha1 bound to alpha-bungarotoxin at 1.94 A resolution. Nature Neuroscience, 10: 953–962.

    Article  Google Scholar 

  • Dutertre, S., Nicke, A., Tyndall, J. D. A., and Lewis, R. J., 2004. Determination of alpha-conotoxin binding modes on neuronal nicotinic acetylcholine receptors. Journal of Molecular Recognition, 17: 339–347.

    Article  Google Scholar 

  • Dutertre, S., Ulens, C., Büttner, R., Fish, A., Van, E. R., Kendel, Y., Hopping, G., Alewood, P. F., Schroeder, C., Nicke, A., Smit, A. B., Sixma, T. K., and Lewis, R. J., 2007. AChBPtargeted alpha-conotoxin correlates distinct binding orientations with nAChR subtype selectivity. EMBO Journal, 26: 3858–3867.

    Article  Google Scholar 

  • Elgoyhen, A. B., Katz, E., and Fuchs, P. A., 2009. The nicotinic receptor of cochlear hair cells: A possible pharmacotherapeutic target. Biochemical Pharmacology, 78: 712–719.

    Article  Google Scholar 

  • Gotti, C., Moretti, M., Gaimarri, A., Zanardi, A., Clementi, F., and Zoli, M., 2007. Heterogeneity and complexity of native brain nicotinic receptors. Biochemical Pharmacology, 74: 1102–1111.

    Article  Google Scholar 

  • Grishin, A. A., Cuny, H., Hung, A., Clark, R. J., Brust, A., Akondi, K., Alewood, P. F., Craik, D. J., and Adams, D. J., 2013. Identifying key amino acid residues that affect a-ConotoxinAuIB inhibition of a3ß4 Nicotinic acetylcholine receptors. Journal Biological Chemistry, 288: 34428–34442.

    Article  Google Scholar 

  • Grishin, A. A., Wang, C. A., Muttenthaler, M., Alewood, P. F., Lewis, R. J., Adams, D. J., 2010. ConotoxinAuIB Isomers exhibit distinct inhibitorymechanisms and differential sensitivity to stoichiometry ofa3ß4 nicotinic acetylcholine receptors. Journal Biological Chemistry, 285: 22254–22263.

    Article  Google Scholar 

  • Halai, R., and Craik, D. J., 2009. Conotoxins: Natural product drug leads. Natural Product Reports, 26: 526–536.

    Article  Google Scholar 

  • Halai, R., Clark, R. J., Nevin, S. T., Jensen, J. E., Adams, D. J., and Craik, D. J., 2009. Scanning mutagenesis of a-conotoxin Vc1.1 reveals residues crucial for activity at the a9a10 nicotinic acetylcholine receptor. Journal Biological Chemistry, 284: 20275–20284.

    Article  Google Scholar 

  • Hopping, G., Wang, C. I. A., Hogg, R. C., Nevin, S. T., Lewis, R. J., Adams, D. J., and Alewood, P. F., 2014. Hydrophobic residues at position 10 of a-conotoxinPnIA influence subtype selectivity between a7 and a3ß2 neuronal nicotinic acetylcholine receptors. Biochemical Pharmacology, 91: 534–542.

    Article  Google Scholar 

  • Hopping, G., Wanga, C. A., Hogg, R. C., Nevin, S. T., Lewis, R. J., Adams, D. J., and Alewood, P. F., 2014. Hydrophobic residues at position 10 of a-conotoxin PnIA influence subtype selectivity between a7 and a3ß2 neuronal nicotinic acetylcholine receptors. Biochemical Pharmacology, 91: 534–542.

    Article  Google Scholar 

  • Janes, R. W., 2005. Alpha-Conotoxins as selective probes for nicotinic acetylcholine receptor subclasses. Current Opinion in Pharmacology, 5: 280–292.

    Article  Google Scholar 

  • Johnson, D. S., Martinez, J., Elgoyhen, A. B., Heinemann, S. F., and McIntosh, J. M., 1995. alpha-ConotoxinImI exhibits subtype-specific nicotinic acetylcholine receptor blockade: Preferential inhibition of homomeric a 7 and a 9 receptors. Molecular Pharmacology, 48: 194–199.

    Google Scholar 

  • Karlin, A., 2002. Emerging structure of the nicotinic acetylcholine receptors. Nature Reviews Neuroscience, 3: 102–114.

    Article  Google Scholar 

  • Klimov, D. K., and Thirumalai, D., 2000. Native topology determines force-induced unfolding pathways in globular proteins. Proceedings of the National Academy of Sciences of the United States of America, 97: 7254–7259.

    Article  Google Scholar 

  • Lee, C. H., Chang, Y. C., Chen, C. S., Tu, S. H., Wang, Y. J., Chen, L. C., Chang, Y. J., Wei, P. L., Chang, H. W., Chang, C. H., Huang, C. S., Wu, C. H., and Ho, Y. S., 2011. Crosstalk between nicotine and estrogen-induced estrogen receptor activation induces a9-nicotinic acetylcholine receptor expression in human breast cancer cells. Breast Cancer Research and Treatment, 129: 331–345.

    Article  Google Scholar 

  • Lee, C., Lee, S. H., Kim, D. H., and Han, K. H., 2012. Molecular docking study on the a3ß2 neuronal nicotinicacetylcholine receptor complexed with a-Conotoxin GIC. Biochemistry and Molecular Biology Reports, 45: 275–280.

    Google Scholar 

  • Lester, H. A., Dibas, M. I., Dahan, D. S., Leite, J. F., and Dougherty, D. A., 2004. Cys-loop receptors: New twists and turns. Trends Neuroscience, 27: 329–336.

    Article  Google Scholar 

  • Levin, E. D., and Rezvani, A. H., 2007. Nicotinic interactions with antipsychotic drugs, models of schizophrenia and impacts on cognitive function. Biochemical Pharmacology, 74: 1182–1191.

    Article  Google Scholar 

  • Lewis, R. J., 2004. Conotoxins as selective inhibitors of neuronal ion channels, receptors and transporters. International Union of Biochemistry and Molecular Biology Life, 56: 89–93.

    Article  Google Scholar 

  • Lewis, R. J., Dutertre, S., Vetter, I., and Christie, M. J., 2012. Conus venom peptide pharmacology. Pharmacological Reviews, 64: 259–298.

    Article  Google Scholar 

  • Livett, B. G., Sandall, D. W., Keays, D., Down, J., Gayler, K. R., Satkunanathan, N., and Khalil, Z., 2006. Therapeutic applications of conotoxins that target the neuronal nicotinic acetylcholine receptor. Toxicon Official Journal of the International Society on Toxinology, 48: 810–829.

    Article  Google Scholar 

  • Luo, S., Akondi, K. B., Zhangsun, D., Wu, Y., Zhu, X., Hu, Y., Christensen, S., Dowell, C., Daly, N. L., Craik, D. J., Wang, C. A., Lewis, R. J., Alewood, P. F., and Michael, J., 2010. Atypical a-Conotoxin LtIA from conus litteratus targets a novel microsite of the a3ß2 nicotinic receptor mcintosh. Journal of Biological Chemistry, 285: 12355–12366.

    Article  Google Scholar 

  • Luo, S., Zhangsun, D., Schroeder, C. I., Zhu, X., Hu, Y., Wu, Y., Weltzin, M. M., Eberhard, S., Kaas, Q., Craik, D. J., McIntosh, J. M., and Whiteaker, P. A., 2014. Novel a4/7-conotoxin LvIA from Conuslividus that selectively blocks a3ß2 vs.a6/a3ß2ß3 nicotinic acetylcholine receptors. Journal of Federation of American Societies for Experimental Biology, 28: 1842–1853.

    Article  Google Scholar 

  • Millard, E. L., Daly, N. L., and Craik, D. J., 2004. Structureactivity relationships of alpha-conotoxins targeting neuronal nicotinic acetylcholine receptors. European Journal of Biochemistry, 271: 2320–2326.

    Article  Google Scholar 

  • Miyazawa, A., Fujiyoshi, Y., Stowell, M., and Unwin, N., 1999. Nicotinic acetylcholine receptor at 4.6 A resolution: Transverse tunnels in the channel wall. Journal of Molecular Biology, 288: 765–786.

    Article  Google Scholar 

  • Nevin, S. T., Clark, R. J., Klimis, H., Christie, M. J., Craik, D. J., and Adams, D. J., 2007. Are a9a10 nicotinic acetylcholine receptors a pain target for a-conotoxins? Molecular Pharmacology, 72: 1406–1410.

  • Northrup, S. H., Pear, M. R., Lee, C. Y., McCammon, J. A., and Karplus, M., 1982. Dynamical theory of activated processes in globular proteins. Proceedings of the National Academy of Sciences of the United States of America, 79: 4035–4039.

    Article  Google Scholar 

  • Pérez, E. G., Cassels, B. K., and Zapata-Torres, G., 2009. Molecular modeling of the alpha9alpha10 nicotinic acetylcholine receptor subtype. Bioorganic & Medicinal Chemistry Letters, 19: 251–254.

    Article  Google Scholar 

  • Pucci, L., Grazioso, G., Dallanoce, C., Rizzi, L., Micheli, C. D., Clementi, F., Bertrand, S., Bertrand, D., Longhi, R., Amici, M. D., and Gotti, C., 2011. Engineering of a-conotoxin MII-derived peptides withincreased selectivity for native a6ß2 nicotinicacetylcholinereceptors. Federation of American Societies for Experimental Biology, 25: 3775–3789.

    Article  Google Scholar 

  • Quiram, P. A., Jones, J. J., and Sine, S. M., 1999. Pairwise interactions between neuronal alpha7 acetylcholine receptors and alpha-conotoxin ImI. Journal of Biological Chemistry, 274: 19517–19524.

    Article  Google Scholar 

  • Romanelli, M. N., Gratteri, P., Guandalini, L., Martini, E., Bonaccini, C., and Gualtieri, F., 2007. Central nicotinic receptors: Structure, function, ligands, and therapeutic potential. Chem-MedChem, 2: 746–767.

    Google Scholar 

  • Sambasivarao, S. V., Roberts, J., Bharadwaj, V. S., Slingsby, J. G., Rohleder, C., Mallory, C., Groome, J. R., and McDougal, O. M., 2014. Acetylcholine promotes binding of a-Conotoxin MII for a3ß2nicotinic acetylcholine receptors. European Journal of Chemical Biology, 15: 413–424.

    Google Scholar 

  • Sine, S. M., 2002. The nicotinic receptor ligand binding domain. Journal Neurobiology, 53: 431–446.

    Article  Google Scholar 

  • Sine, S. M., and Engel, A. G., 2006. Recent advances in Cysloop receptor structure and function. Nature, 440: 448–455.

    Article  Google Scholar 

  • Smit, A. B., Syed, N. I., Schaap, D., van Minnen, J., Klumperman, J., Kits, K. S., Lodder, H., van der Schors, R. C., van Elk, R., Sorgedrager, B., Brejc, K., Sixma, T. K., and Geraerts, W. P., 2001. A glia-derived acetylcholine-binding protein that modulates synaptic transmission. Nature, 411: 261–268.

    Article  Google Scholar 

  • Taly, A., Corringer, P. J., Guedin, D., Lestage, P., and Changeux, J. P., 2009. Nicotinic receptors: Allosteric transitions and therapeutic targets in the nervous system. Nature Reviews Drug Discovery, 8: 733–750.

    Article  Google Scholar 

  • Terlau, H., and Olivera, B. M., 2004. Conus venoms: A rich source of novel ion channel-targeted peptides. Physiological Reviews, 84: 41–68.

    Article  Google Scholar 

  • Ulens, C., Hogg, R. C., Celie, P. H., Bertrand, D., Tsetlin, V., Smit, A. B., and Sixma, T. K., 2006. Structural determinants of selective alpha-conotoxin binding to a nicotinic acetylcholine receptor homolog AChBP. Proceedings of the National Academy of Sciences of the United States of America, 103: 3615–3620.

    Article  Google Scholar 

  • Unwin, N., 2005. Refined structure of the nicotinic acetylcholine receptor at 4A resolution. Journal of Molecular Biology, 346: 967–989.

    Article  Google Scholar 

  • Vincler, M., Wittenauer, S., Parker, R., Ellison, M., Olivera, B. M., and McIntosh, J. M., 2006. Molecular mechanism for analgesia involving specific antagonism of alpha9alpha10 nicotinic acetylcholine receptors. Proceedings of the National Academy of Sciences of the United States of America, 103: 17880–17884.

    Article  Google Scholar 

  • Yu, R., Craik, D. J., and Kaas, Q., 2011. Blockade of neuronal a7-nAChR by a-conotoxin ImI explained by computational scanning and energy calculations. PLoS Computational Biology, 7: e1002011.

    Article  Google Scholar 

  • Yu, R., Kompella, S. N., Adams, D. J., Craik, D. J., and Kaas, Q., 2013. Determination of the a-conotoxin Vc1.1 binding site on the a9a10 nicotinic acetylcholine receptor. Journal Medicinal Chemistry, 56: 3557–3567.

    Article  Google Scholar 

  • Zouridakis, M., Giastas, P., Zarkadas, E., Chroni-Tzartou, D., Bregestovski, P., and Tzartos, S. J., 2014. Crystal structures of free and antagonist-bound states of human a9 nicotinic receptor extracellular domain. Nature Structural & Molecular Biology, 21: 976–980.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rilei Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tabassum, N., Yu, R. & Jiang, T. Computational determination of the binding mode of α-conotoxin to nicotinic acetylcholine receptor. J. Ocean Univ. China 15, 1027–1033 (2016). https://doi.org/10.1007/s11802-016-3049-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-016-3049-y

Keywords

Navigation