Skip to main content
Log in

Effects of periodical salinity fluctuation on the growth, molting, energy homeostasis and molting-related gene expression of Litopenaeus vannamei

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

To determine the response of Litopenaeus vannamei to periodical salinity fluctuation, a 30-day experiment was conducted in laboratory. In this experiment, two salinity fluctuation amplitudes of 4 (group S4) and 10 (group S10) were designed. The constant salinity of 30 (group S0) was used as the control. Levels of shrimp growth, molting frequency (MF), cellular energy status (ATP, ADP and AMP), as well as the expression of genes encoding molt-inhibiting hormone (MIH), crustacean hyperglycemic hormone (CHH), ecdysteroid-regulated protein (ERP), and energy-related AMP-activated protein kinase (AMPK) were determined. The results showed that periodical salinity fluctuation significantly influenced all indicators except MF which ranged from 13.3% in group S10 to15.4% in group S4. In comparison with shrimps cultured at the constant salinity of 30, those in group S4 showed a significant elevation in growth rate, food conversion efficiency, cellular energy status, ERP and MIH gene transcript abundance, and a significant reduction in CHH and AMPK transcript abundance (P < 0.05). However, salinity fluctuation of 10 only resulted in a significant variation in MIH and CHH gene expression when compared to the control (P < 0.05). According to our findings, L. vannamei may be highly capable of tolerating salinity fluctuation. When ambient salinity fluctuated at approx. 4, the increased MF and energy stores in organisms may aid to promoting shrimp growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brito, R., Chimal, M. E., and Rosas, C., 2000. Effect of salinity in survival, growth, and osmotic capacity of early juveniles of Farfantepenaeus brasiliensis (Decapoda: Penaeidae). Journal of Experimental Marine Biology and Ecology, 244 (2): 253–263.

    Article  Google Scholar 

  • Calow, P., 1991. Physiological costs of combating chemical toxicants: Ecological implications. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 100 (1): 3–6.

    Article  Google Scholar 

  • Calow, P., and Forbes, V. E., 1998. How do physiological responses to stress translate into ecological and evolutionary processes? Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 120 (1): 11–16.

    Article  Google Scholar 

  • Cao, M., Wang, X. Q., Yan, B. L., Zhang, Q. Q., and Gao, J. F., 2010. Effects of salinity fluctuation and dietary traditional Chinese herbal medicines on survival, growth and immunity of Exopalaemon carinicauda. Journal of Anhui Agriculture Science, 38 (7): 3512–3515 (in Chinese).

    Google Scholar 

  • Charmantier, G., Haond, C., Lignot, J., and Charmantier-Daures, M., 2001. Ecophysiological adaptation to salinity throughout a life cycle: A review in homarid lobsters. Journal of Experimental Biology, 204 (5): 967–977.

    Google Scholar 

  • Cházaro-Olvera, S., and Peterson, M. S., 2004. Effects of salinity on growth and molting of sympatric Callinectes spp. from Camaronera Lagoon, Veracruz, Mexico. Bulletin of Marine Science, 74 (1): 115–127.

    Google Scholar 

  • Cheng, W., Liu, C. H., Tsai, C. H., and Chen, J. C., 2005. Molecular cloning and characterisation of a pattern recognition molecule, lipopolysaccharide-and β-1, 3-glucan binding protein (LGBP) from the white shrimp Litopenaeus vannamei. Fish and Shellfish Immunology, 18 (4): 297–310.

    Article  Google Scholar 

  • Chung, J. S., and Webster, S. G., 2003. Moult cycle-related changes in biological activity of moult-inhibiting hormone (MIH) and crustacean hyperglycaemic hormone (CHH) in the crab, Carcinus maenas. European Journal of Biochemistry, 270 (15): 3280–3288.

    Article  Google Scholar 

  • Chung, J. S., and Webster, S. G., 2005. Dynamics of in vivo release of molt-inhibiting hormone and crustacean hyperglycemic hormone in the shore crab, Carcinus maenas. Endocrinology, 146 (12): 5545–5551.

    Article  Google Scholar 

  • Chung, J. S., Zmora, N., Katayama, H., and Tsutsui, N., 2010. Crustacean hyperglycemic hormone (CHH) neuropeptidesfamily: Functions, titer, and binding to target tissues. General and Comparative Endocrinology, 166 (3): 447–454.

    Article  Google Scholar 

  • Covi, J. A., Chang, E. S., and Mykles, D. L., 2009. Conserved role of cyclic nucleotides in the regulation of ecdysteroidogenesis by the crustacean molting gland. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 152 (4): 470–477.

    Article  Google Scholar 

  • Ding, S., Wang, F., Guo, B., and Li, X. S., 2008. Effects of salinity fluctuation on the molt, growth, and energy budget of juvenile Fenneropenaeus chinensis. Chinese Journal of Applied Ecology, 19 (2): 419–423 (in Chinese).

    Google Scholar 

  • Dong, Y. W., Han, G. D., and Huang, X. W., 2014. Stress modulation of cellular metabolic sensors: Interaction of stress from temperature and rainfall on the intertidal limpet Cellana toreuma. Molecular Ecology, 23 (18): 4541–4554.

    Article  Google Scholar 

  • Fanjul-Moles, M. L., 2006. Biochemical and functional aspects of crustacean hyperglycemic hormone in decapod crustaceans: Review and update. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology, 142 (3): 390–400.

    Google Scholar 

  • Feng, C., Tian, X., Dong, S., Su, Y., Wang, F., and Ma, S., 2008. Effects of frequency and amplitude of salinity fluctuation on the growth and energy budget of juvenile Litopenaeus vannamei (Boone). Aquaculture research, 39 (15): 1639–1646.

    Google Scholar 

  • Frederich, M., O’Rourke, M. R., Furey, N. B., and Jost, J. A., 2009. AMP-activated protein kinase (AMPK) in the rock crab, Cancer irroratus: An early indicator of temperature stress. Journal of Experimental Biology, 212 (5): 722–730.

    Article  Google Scholar 

  • Gao, W., Tan, B., Mai, K., Chi, S., Liu, H., Dong, X., and Yang, Q., 2012. Profiling of differentially expressed genes in hepatopancreas of white shrimp (Litopenaeus vannamei) exposed to long-term low salinity stress. Aquaculture, 364: 186–191.

    Article  Google Scholar 

  • Giacomin, M., Jorge, M. B., and Bianchini, A., 2014. Effects of copper exposure on the energy metabolism in juveniles of the marine clam Mesodesma mactroides. Aquatic Toxicology, 152: 30–37.

    Article  Google Scholar 

  • Gutiérrez, J. S., Masero, J. A., Abad-Gómez, J. M., Villegas, A., and Sánchez-Guzmán, J. M., 2011. Understanding the energetic costs of living in saline environments: Effects of salinity on basal metabolic rate, body mass and daily energy consumption of a long-distance migratory shorebird. The Journal of Experimental Biology, 214 (5): 829–835.

    Article  Google Scholar 

  • Hardie, D. G., 2008. AMPK: A key regulator of energy balance in the single cell and the whole organism. International Journal of Obesity, 32: S7–S12.

    Article  Google Scholar 

  • Hardie, D. G., 2011. Sensing of energy and nutrients by AMPactivated protein kinase. The American Journal of Clinical Nutrition, 93 (4): 891S–896S.

    Article  Google Scholar 

  • Hopkins, P. M., 2012. The eyes have it: A brief history of crustacean neuroendocrinology. General and Comparative Endocrinology, 175 (3): 357–366.

    Article  Google Scholar 

  • Jiang, H., Yin, Y., Zhang, X., Hu, S., and Wang, Q., 2009. Chasing relationships between nutrition and reproduction: A comparative transcriptome analysis of hepatopancreas and testis from Eriocheir sinensis. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 4 (3): 227–234.

    Google Scholar 

  • Kim, B. M., Jeong, C. B., Han, J., Kim, I. C., Rhee, J. S., and Lee, J. S., 2013. Role of crustacean hyperglycemic hormone (CHH) in the environmental stressor-exposed intertidal copepod Tigriopus japonicus. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology, 158 (3): 131–141.

    Google Scholar 

  • Laiz-Carrión, R., Sangiao-Alvarellos, S., Guzmán, J. M., del Río, M. P. M., Soengas, J. L., and Mancera, J. M., 2005. Growth performance of gilthead sea bream Sparus aurata in different osmotic conditions: implications for osmoregulation and energy metabolism. Aquaculture, 250 (3): 849–861.

    Article  Google Scholar 

  • Lawal-Are, A. O., and Kusemiju, K., 2010. Effect of salinity on survival and growth of blue crab, Callinectes amnicola from Lagos Lagoon, Nigeria. Journal of Environmental Biology, 31 (4): 461–464.

    Google Scholar 

  • Lee, K. J., Elton, T. S., Bej, A. K., Watts, S. A., and Watson, R. D., 1995. Molecular cloning of a cDNA encoding putative molt-inhibiting hormone from the blue crab, Callinectes sapidus. Biochemical and Biophysical Research Communications, 209 (3): 1126–1131.

    Article  Google Scholar 

  • Lee, K. J., Watson, R. D., and Roer, R. D., 1998. Molt-Inhibiting hormone mRNA levels and ecdysteroid titer during a molt cycle of the blue crab, Callinectes sapidus. Biochemical and Biophysical Research Communications, 249 (3): 624–627.

    Article  Google Scholar 

  • Li, Y., Wang, F., Dong, S. L., and Sun, H., 2010. Effects of salinity fluctuation on the molt and respiratory metabolism of juvenile Litopenaeus vammmei. Periodical of Ocean University of China, 40 (7): 47–52 (in Chinese with English abstract).

    Google Scholar 

  • Lin, Y. C., Chen, J. C., Li, C. C., Morni, W. Z., Suhaili, A. S. N., Kuo, Y. H., and Huang, C. L., 2012. Modulation of the innate immune system in white shrimp Litopenaeus vannamei following long-term low salinity exposure. Fish and Shellfish Immunology, 33 (2): 324–331.

    Article  Google Scholar 

  • Liu, C. Q., Wang, J. X., Zhang, Y. J., and Liu, L. J., 2008. Effects of salinity and Na+/K+ in percolating water from salinealkali soil on the growth of Litopenaeus vannamei. The Journal of Applied Ecology, 19 (6): 1337–1342.

    Google Scholar 

  • Liu, M. Q., Pan, L. Q., Li, L., and Zheng, D. B., 2014. Molecular cloning, characterization and recombinant expression of crustacean hyperglycemic hormone in white shrimp Litopenaeus vannamei. Peptides, 53: 115–124.

    Article  Google Scholar 

  • Livak, K. J., and Schmittgen, T. D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 25 (4): 402–408.

    Article  Google Scholar 

  • Montagne, N., Soyez, D., Gallois, D., Ollivaux, C., and Toullec, J. Y., 2008. New insights into evolution of crustacean hyperglycaemic hormone in decapods-first characterization in Anomura. FEBS Journal, 275 (5): 1039–1052.

    Article  Google Scholar 

  • Mu, Y. C., Wang, F., Dong, S. L., Dong, S. S., and Zhang, C. B., 2005a. The effects of salinity fluctuation in different ranges on the intermolt period and growth of juvenile Fenneropenaeus chinensis. Acta Oceanologica Sinica, 27 (2): 122–126 (in Chinese).

    Google Scholar 

  • Mu, Y. C., Wang, F., Dong, S. L., Dong, S. S., and Zhu, C. B., 2005b. Effects of salinity fluctuation in different ranges on the intermolt period and growth of juvenile Fenneropenaeus chinensis. Acta Oceanologica Sinica, 24 (3): 141–147.

    Google Scholar 

  • Mu, Y. C., Wang, F., Dong, S. L., Huang, G. Q., and Dong, S. S., 2005c. Effects of salinity fluctuation pattern on growth and energy budget of juvenile shrimp Fenneropenaeus chinensis. Journal of Shellfish Research, 24 (4): 1217–1221.

    Article  Google Scholar 

  • Mykles, D. L., 2011. Ecdysteroid metabolism in crustaceans. The Journal of Steroid Biochemistry and Molecular Biology, 127 (3): 196–203.

    Article  Google Scholar 

  • Nakatsuji, T., and Sonobe, H., 2004. Regulation of ecdysteroid secretion from the Y-organ by molt-inhibiting hormone in the American crayfish, Procambarus clarkii. General and Comparative Endocrinology, 135 (3): 358–364.

    Article  Google Scholar 

  • Nakatsuji, T., Sonobe, H., and Watson, R. D., 2006. Moltinhibiting hormone-mediated regulation of ecdysteroid synthesis in Y-organs of the crayfish (Procambarus clarkii): Involvement of cyclic GMP and cyclic nucleotide phosphodiesterase. Molecular and Cellular Endocrinology, 253 (1): 76–82.

    Article  Google Scholar 

  • Pörtner, H. O., Bennett, A. F., Bozinovic, F., Clarke, A., Lardies, M. A., Lucassen, M., Pelster, B., Schiemer, F., and Stillman, J. H., 2006. Trade-offs in thermal adaptation: The need for a molecular to ecological integration. Physiological and Biochemical Zoology, 79 (2): 295–313.

    Article  Google Scholar 

  • Rodrigues, A. P., Oliveira, P. C., Guilhermino, L., and Guimaraes, L., 2012. Effects of salinity stress on neurotransmission, energy metabolism, and anti-oxidant biomarkers of Carcinus maenas from two estuaries of the NW Iberian Peninsula. Marine Biology, 159 (9): 2061–2074.

    Article  Google Scholar 

  • Sang, H. M., and Fotedar, R., 2004. Growth, survival, haemolymph osmolality and organosomatic indices of the western king prawn (Penaeus latisulcatus Kishinouye, 1896) reared at different salinities. Aquaculture, 234 (1): 601–614.

    Article  Google Scholar 

  • Sokolova, I. M., Frederich, M., Bagwe, R., Lannig, G., and Sukhotin, A. A., 2012. Energy homeostasis as an integrative tool for assessing limits of environmental stress tolerance in aquatic invertebrates. Marine Environmental Research, 79: 1–15.

    Article  Google Scholar 

  • Spanings-Pierrot, C., Soyez, D., Van Herp, F., Gompel, M., Skaret, G., Grousset, E., and Charmantier, G., 2000. Involvement of crustacean hyperglycemic hormone in the control of gill ion transport in the crab Pachygrapsus marmoratus. General and Comparative Endocrinology, 119 (3): 340–350.

    Article  Google Scholar 

  • Spaziani, E., and Wang, W. L., 1993. Biosynthesis of ecdysteroid hormones by crustacean Y-organs: conversion of cholesterol to 7-dehydrocholesterol is suppressed by a steroid 5α-reductase inhibitor. Molecular and Cellular Endocrinology, 95 (1): 111–114.

    Article  Google Scholar 

  • Tseng, Y. C., and Hwang, P. P., 2008. Some insights into energy metabolism for osmoregulation in fish. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology, 148 (4): 419–429.

    Google Scholar 

  • Vaseeharan, B., Ramasamy, P., Wesley, S. G., and Chen, J. C., 2013. Influence of acute salinity changes on biochemical, hematological and immune characteristics of Fenneropenaeus indicus during white spot syndrome virus challenge. Microbiology and Immunology, 57 (6): 463–469.

    Article  Google Scholar 

  • Wang, C. J., Zhu, D. F., Qi, Y. Z., Hu, Z. H., Xie, X., and Shen, J., 2013. Molt-inhibiting hormone levels and ecdysteroid titer during a molt cycle of Portunus Trituberculatus. Acta Hydrobiologica Sinicai, 37 (1): 22–28 (in Chinese).

    Google Scholar 

  • Zhang, Y., Sun, Y., Liu, Y., Geng, X., Wang, X., Wang, Y., and Yang, W., 2011. Molt-inhibiting hormone from Chinese mitten crab (Eriocheir sinensis): Cloning, tissue expression and effects of recombinant peptide on ecdysteroid secretion of YOs. General and Comparative Endocrinology, 173 (3): 467–474.

    Article  Google Scholar 

  • Zhou, J., Wang, W. N., Ma, G. Z., Wang, A. L., He, W. Y., Wang, P., Liu, Y., Liu, J. J., and Sun, R. Y., 2008. Gene expression of ferritin in tissue of the Pacific white shrimp, Litopenaeus vannamei after exposure to pH stress. Aquaculture, 275 (1): 356–360.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Guo, X., Wang, F. et al. Effects of periodical salinity fluctuation on the growth, molting, energy homeostasis and molting-related gene expression of Litopenaeus vannamei . J. Ocean Univ. China 15, 911–917 (2016). https://doi.org/10.1007/s11802-016-3043-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-016-3043-4

Key words

Navigation