Skip to main content
Log in

A real-time photo-realistic rendering algorithm of ocean color based on bio-optical model

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

A real-time photo-realistic rendering algorithm of ocean color is introduced in the paper, which considers the impact of ocean bio-optical model. The ocean bio-optical model mainly involves the phytoplankton, colored dissolved organic material (CDOM), inorganic suspended particle, etc., which have different contributions to absorption and scattering of light. We decompose the emergent light of the ocean surface into the reflected light from the sun and the sky, and the subsurface scattering light. We establish an ocean surface transmission model based on ocean bidirectional reflectance distribution function (BRDF) and the Fresnel law, and this model’s outputs would be the incident light parameters of subsurface scattering. Using ocean subsurface scattering algorithm combined with bio-optical model, we compute the scattering light emergent radiation in different directions. Then, we blend the reflection of sunlight and sky light to implement the real-time ocean color rendering in graphics processing unit (GPU). Finally, we use two kinds of radiance reflectance calculated by Hydrolight radiative transfer model and our algorithm to validate the physical reality of our method, and the results show that our algorithm can achieve real-time highly realistic ocean color scenes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ando, R., Thürey, N., and Wojtan, C., 2013. Highly adaptive liquid simulations on tetrahedral meshes. ACM Transactions on Graphics, 32 (4): 96–96.

    Article  Google Scholar 

  • Ben-Artzi, A., Egan, K., Durand, F., and Ramamoorthi, R., 2008. A precomputed polynomial representation for interactive BRDF editing with global illumination. ACM Transactions on Graphics, 27 (2): 21–28.

    Article  Google Scholar 

  • Blasi, P., Saec, B., and Schlick, C., 1993. A rendering algorithm for discrete volume density objects. Computer Graphics Forum, 12 (3): 201–210.

    Article  Google Scholar 

  • Bruneton, E., Neyret, F., and Holzschuch, N., 2010. Real-time realistic ocean lighting using seamless transitions from geometry to BRDF. Computer Graphics Forum, 29 (2): 487–496.

    Article  Google Scholar 

  • Chiu, Y. F., and Chang, C. F., 2006. GPU-based ocean rendering. IEEE International Conference on Multimedia and Expo, 2006: 2125–2128, DOI: 10.1109/ICME.2006.262655.

    Google Scholar 

  • Dorsey, J., Edelman, A., Jensen, H. W., Legakis, J., and Pedersen, H. K., 2006. Modeling and rendering of weathered stone. ACM SIGGRAPH 2006 Courses, 2006: 4.

    Article  Google Scholar 

  • Francois, G., Pattanaik, S., Bouatouch, K., and Breton, G., 2008. Subsurface texture mapping. Computer Graphics and Applications, 28 (1): 34–42.

    Article  Google Scholar 

  • Frisvad, J. R., Hachisuka, T., and Kjeldsen, T. K., 2014. Directional dipole model for subsurface scattering. ACM Transactions on Graphics, 34 (1): 5.

    Article  Google Scholar 

  • Habel, R., Christensen, P. H., and Jarosz, W., 2013. Photon beam diffusion: A hybrid monte-carlo method for subsurface scattering. Computer Graphics Forum, 32 (4): 27–37.

    Article  Google Scholar 

  • Hinsinger, D., Neyret, F., and Cani, M. P., 2002. Interactive animation of ocean waves. Proceedings of the 2002 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. New York, 161–166.

    Chapter  Google Scholar 

  • Hu, Y. H., Velho, L., Tong, X., Guo, B. N., and Shum, H., 2006. Realistic, real-time rendering of ocean waves. Computer Animation and Virtual Worlds, 17 (1): 59–67, DOI: 10.1002/cav.74.

    Article  Google Scholar 

  • Jarosz, W., Zwicker, M., and Jensen, H. W., 2008. The beam radiance estimate for volumetric photon mapping. ACM SIGGRAPH 2008 Classes, 2008: 3.

    Google Scholar 

  • Jensen, H. W., and Buhler, J., 2002. A rapid hierarchical rendering technique for translucent materials. ACM Transactions on Graphics, 21 (3): 576–581.

    Article  Google Scholar 

  • Jensen, H. W., and Christensen, P. H., 1998. Efficient simulation of light transport in scences with participating media using photon maps. Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques. Orlando, 311–320.

    Google Scholar 

  • Jensen, H. W., Marschner, S. R., Levoy, M., and Hanrahan, P., 2001. A practical model for subsurface light transport. Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques. Los Angeles, 511–518.

    Google Scholar 

  • Lafortune, E. P., and Willems, Y. D., 1996. Rendering participating media with bidirectional path tracing. Rendering Techniques’ 96, 1996: 91–100.

    Google Scholar 

  • Levin, A., Glasner, D., Xiong, Y., Durand, F., Freeman, W., Matusik, W., and Zickler, T., 2013. Fabricating BRDFs at high spatial resolution using wave optics. ACM Transactions on Graphics, 32 (4): 144.

    Article  Google Scholar 

  • Lewis, M. R., Cullen, J. J., and Platt, T., 1983. Phytoplankton and thermal structure in the upper ocean: Consequences of nonuniformity in chlorophyll profile. Journal of Geophysical Research: Oceans, 88 (C4): 2565–2570.

    Article  Google Scholar 

  • Liang, J. M., Gong, J. H., and Li, Y., 2015. Realistic rendering for physically based shallow water simulation in Virtual Geographic Environments (VGES). Annals of GIS, 21 (4): 301–312.

    Article  Google Scholar 

  • Liu, S. G., Wang, Z., and Peng, Q. S., 2011. Realistic simulation of lighting effects of turbid water. Journal of Computer-Aided Design & Computer Graphics, 23 (1): 40–45.

    Google Scholar 

  • Morel, A., 1974. Optical properties of pure water and pure sea water. In: Optical Aspects of Oceanography. Jerlov, N. G., and Steeman-Nielsen, E., eds., Academic Press, London, 1–24.

    Google Scholar 

  • Morel, A., 1991. Light and marine photosynthesis: A spectral model with geochemical and climatological implications. Progress in Oceanography, 26 (3): 263–306.

    Article  Google Scholar 

  • Nielsen, M. B., Söderström, A., and Bridson, R., 2013. Synthesizing waves from animated height fields. ACM Transactions on Graphics, 32 (1): 60–61.

    Article  Google Scholar 

  • Novák, J., Nowrouzezahrai, D., Dachsbacher, C., and Jarosz, W., 2012. Virtual ray lights for rendering scenes with participating media. ACM Transactions on Graphics, 31 (4): 60.

    Article  Google Scholar 

  • Petzold, T. J., 1972. Volume Scattering Functions for Selected Ocean Waters. Scripps Institution of Oceanography La Jolla CA Visibility Lab, 1972: 72–78.

    Google Scholar 

  • Pope, R. M., and Fry, E. S., 1997. Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements. Applied Optics, 36 (33): 8710–8723.

    Google Scholar 

  • Premože, S., and Ashikhmin, M., 2000. Rendering natural waters. Computer Graphics and Applications, 20 (4): 23–434.

    Google Scholar 

  • Puig-Centelles, A., Ramos, F., Ripolles, O., Chover, M., and Sbert, M., 2014. View-dependent tessellation and simulation of ocean surfaces. The Scientific World Journal, 2014 (3): 979418.

    Google Scholar 

  • Richmond, J. C., Hsia, J. J., Ginsberg, I. W., and Limperis, T., 1977. Geometrical Considerations and Nomenclature for Reflectance. Monograph 160, National Bureau of Standards (US), 3–12.

    Google Scholar 

  • Ross, V., Dion, D., and Potvin, G., 2005. Detailed analytical approach to the Gaussian surface bidirectional reflectance distribution function specular component applied to the sea surface. Journal of Optical Society of America A, 22 (11): 2442–2453.

    Article  Google Scholar 

  • Schlick, C., 1994. An inexpensive BRDF model for physicallybased rendering. Computer Graphics Forum, 13 (3): 233–246.

    Article  Google Scholar 

  • Shi, J. J., Zhu, D. M., Zhang, Y. P., and Wang, Z. Q., 2012. Realistically rendering polluted water. The Visual Computer, 28 (6-8): 647–656.

    Article  Google Scholar 

  • Smith, B. G., 1967. Geometrical shadowing of a random rough surface. Antennas and Propagation, 15 (5): 668–671.

    Article  Google Scholar 

  • Smith, R. C., and Baker, K. S., 1981. Optical properties of the clearest natural waters (200–800 nm). Applied Optics, 20 (2): 177–184.

    Article  Google Scholar 

  • Tessendorf, J., 2001. Simulating ocean water. Simulating Nature: Realistic and Interactive Techniques. SIGGRAPH, 1 (2): 5.

    Google Scholar 

  • Xu, K., Cao, Y. P., Ma, L. Q., Dong, Z., Wang, R., and Hu, S. M., 2014. A practical algorithm for rendering interreflections with all-frequency BRDFs. ACM Transactions on Graphics, 33 (1): 57–76.

    Article  Google Scholar 

  • Zeisse, C. R., 1995. Radiance of the ocean horizon. Journal of Optical Society of America A, 12 (9): 2022–2030.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fenglin Tian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, C., Xu, S., Wang, H. et al. A real-time photo-realistic rendering algorithm of ocean color based on bio-optical model. J. Ocean Univ. China 15, 996–1006 (2016). https://doi.org/10.1007/s11802-016-3037-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-016-3037-2

Keywords

Navigation