Skip to main content
Log in

Spurious dianeutral mixing in a global ocean model using spherical centroidal voronoi tessellations

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

In order to quantitatively evaluate the spurious dianeutral mixing in a global ocean model MPAS-Ocean (Model for Prediction Across Scales) using a spherical centroidal voronoi tessellations developed jointly by the National Center for Atmospheric Research and the Los Alamos National Laboratory in the United States, we choose z* vertical coordinate system in MPAS-Ocean, in which all physical mixing processes, such as convection adjustment and explicit diffusion parameter schemes, are omitted, using a linear equation of state. By calculating the Reference Potential Energy (RPE), front revolution position, time rate of RPE change, probability density function distribution and dimensionless parameter χ, from the perspectives of resolution, viscosity, Horizontal Grid Reynolds Number (HGRN), ReΔ, and momentum transmission scheme, using two ideal cases, overflow and baroclinic eddy channel, we qualitatively analyze the simulation results by comparison with the three non-isopycnal models in Ilicak et al. (2012), i.e., MITGCM, MOM, and ROMS. The results show that the spurious dianeutral mixing in the MPAS-Ocean increases over time. The spurious dianeutral transport is proportional to the HGRN directly and is reduced by increasing the lateral viscosity or using a finer resolution to control HGRN. When the HGRN is less than 10, spurious transport is reduced significantly. When using the proper viscosity closure, MPAS-Ocean performs better than MITGCM and MOM, closely to ROMS, in the 2D case without rotation, and much better than the above-mentioned three ocean models under the condition of 3D space with rotation due to the cell area difference between the hexagon cell and the quadrilateral cell with the same resolution. Both the Zalesak (1979) flux corrected transport scheme and Leith closure in MPAS-Ocean play an excellent role in reducing spurious dianeutral mixing. The performance of Leith scheme is preferable to the condition of three-dimensional baroclinic eddy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benjamin, T. B., 1968. Gravity currents and related phenomena. Journal of Fluid Mechanics, 31 (2): 209–248.

    Article  Google Scholar 

  • Burchard, H., and Rennau, H., 2008. Comparative quantification of physically and numerically induced mixing in the ocean models. Ocean Modelling, 20 (3): 293–311.

    Article  Google Scholar 

  • Getzlaff, J., Nurser, G., and Oschlies, A., 2010. Diagnostics of diapycnal diffusivity in z-level ocean models part I: 1 dimensional case studies. Ocean Modelling, 35 (3): 173–186.

    Article  Google Scholar 

  • Graham, J. P., and Ringler, T., 2013. A framework for the evaluation of turbulence closures used in mesoscale ocean largeeddy simulations. Ocean Modelling, 65 (5): 25–39.

    Article  Google Scholar 

  • Gregg, M., Sanford, T., and Winkel, D., 2003. Reduced mixing from the breaking of internal waves in equatorial waters. Nature, 422 (4): 513–515.

    Article  Google Scholar 

  • Griffies, S. M., Pacanowski, R. C., and Hallberg, R. W., 2000. Spurious diapycnal mixing associated with advection in a zcoordinate ocean model. Monthly Weather Review, 128 (3): 538–564.

    Article  Google Scholar 

  • Haidvogel, D. B., and Beckmann, A., 1999. Numerical Ocean Circulation Modeling. Imperial College Press, London, 1–344.

    Google Scholar 

  • Hill, C., Ferreira, D., Campin, J.-M., Marshall, J., Abernathey, R., and Barrier, N., 2012. Controlling spurious diapycnal mixing in eddy-resolving height-coordinate ocean models-insights from virtual deliberate tracer release experiments. Ocean Modelling, 45-46 (1): 14–26.

    Article  Google Scholar 

  • Ilicak, M., Adcroft, A. J., Griffies, S. M., and Hallberg, R. W., 2012. Spurious dianeutral mixing and the role of momentum closure. Ocean Modelling, 45 (1): 37–58.

    Article  Google Scholar 

  • IOC, SCOR, and IAPSO, 2010. The International Thermo-dynamic Equation of Seawater-2010: Calculation and Use of Thermodynamic Properties. Intergovernmental Oceanographic Commission, Manuals and Guides No. 56, UNESCO, 196pp. available from http://www.TEOS-10.org.

  • Jackson, L., Hallberg, R., and Legg, S., 2008. A parameterization of shear-driven turbulence for ocean climate models. Journal of Physical Oceanography, 38 (5): 1033–1053.

    Article  Google Scholar 

  • Jacobsen, D., Petersen, M., and Ringler, T., 2013. MPAS-Ocean Model User’s Guide. Technical Report. Los Alamos National Laboratory. Version2.0., 1–86, <http://mpas-dev.github.io>.

    Google Scholar 

  • Klocker, A., and McDougall, T. J., 2010. Influence of the nonlinear equation of state on global estimates of dianeutral advection and diffusion. Journal of Physical Oceanography, 40 (8): 1690–1709.

    Article  Google Scholar 

  • Kunze, E., and Sanford, T. B., 1996. Abyssal mixing: Where it is not. Journal of Physical Oceanography, 26 (10): 2286–2296.

    Article  Google Scholar 

  • Kunze, E., Firing, E., Hummon, J. M., Chereskin, T. K., and Thurnherr, A. M., 2006. Global abyssal mixing inferred from lowered ADCP shear and CTD strain profiles. Journal of Physical Oceanography, 36 (8): 1553–1576.

    Article  Google Scholar 

  • Large, W. G., McWilliams, J. C., and Doney, S. C., 1994. Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Reviews of Geophysics, 32 (4): 363–403.

    Article  Google Scholar 

  • Ledwell, J. R., St. Laurent, L. C., Girton, J., and Toole, J., 2011. Diapycnal mixing in the Antarctic Circumpolar Current. Journal of Physical Oceanography, 41 (1): 241–246.

    Article  Google Scholar 

  • Ledwell, J. R., Watson, A. J., and Law, C. S., 1993. Evidence for slow mixing across the pycnocline from an open-ocean tracer-release experiment. Nature, 364 (8): 701–703.

    Article  Google Scholar 

  • Lee, M.-M., Coward, A. C., and Nurser, A. G., 2002. Spurious diapycnal mixing of deep waters in an eddy-permitting global ocean model. Ocean Modelling, 32 (5): 1522–1535.

    Google Scholar 

  • Legg, S., Hallberg, R. W., and Girton, J. B., 2006. Comparison of entrainment in overflows simulated by z-coordinate, isopycnal and non-hydrostatic models. Ocean Modelling, 11 (1-2): 69–97.

    Article  Google Scholar 

  • Leith, C., 1996. Stochastic models of chaotic system. Physica D: Nonlinear Phenomena, 98 (2-4): 481–491.

    Article  Google Scholar 

  • Marchesiello, P., Debreu, L., and Couvelard, X., 2009. Spurious diapycnal mixing in terrain-following coordinate models: The problem and a solution. Ocean Modelling, 26 (3-4): 156–169.

    Article  Google Scholar 

  • Marsh, R., 2000. Cabbeling due to isopycnal mixing in isopycnic coordinate models. Journal of Physical Oceanography, 30: 1757–1775.

    Article  Google Scholar 

  • McDougall, T. J., 1987. Thermobaricity, cabbeling, and watermass conversion. Journal of Geophysics Research, 92 (5): 5448–5464.

    Article  Google Scholar 

  • Munk, W., and Wunsch, C., 1998. Abyssal recipes II: Energetics of tidal and wind mixing. Deep Sea Research Part I: Oceanographic Research Papers, 45 (12): 1977–2010.

    Article  Google Scholar 

  • Özgökmen, T. M., Iliescu, T., and Fischer, P. F., 2009. Large eddy simulation of stratified mixing in a three-dimensional lock-exchange system. Ocean Modelling, 26 (3-4): 134–155.

    Article  Google Scholar 

  • Ringler, T., Petersen, M., Higdon, R. L., Jacobsen, D., Jones, P. W., and Maltrud, M., 2013. A multi-resolution approach to global ocean modeling. Ocean Modelling, 69 (9): 211–232.

    Article  Google Scholar 

  • Simmons, H. L., Jayne, S. R., St. Laurent, L. C., and Weaver, A. J., 2004. Tidally driven mixing in a numerical model of the ocean general circulation. Ocean Modelling, 6 (3-4): 245–263.

    Article  Google Scholar 

  • Skamarock, W. C., Klemp, J. B., Duda, M. G., Fowler, L. D., Park, S. H., and Ringler, T. D., 2012. A multiscale non-hydrostatic atomspheric model using centroidal Voronoi tessellations and c-grid staggering. Monthly Weather Review, 140 (9): 3090–3105.

    Article  Google Scholar 

  • Winters, K. B., Lombard, P. N., Riley, J. J., and D’Asaro, E. A., 1995. Available potential energy and mixing in density-stratified fluids. Journal of Fluid Mechanics, 289 (4): 115–128.

    Article  Google Scholar 

  • Winton, M., Hallberg, R., and Gnanadesikan, A., 1998. Simulation of density-driven frictional downslope flow in z-coordinate ocean models. Journal of Physical Oceanography, 28 (11): 2163–2174.

    Article  Google Scholar 

  • Zalesak, S., 1979. Fully mutidimensional flux-corrected transport algorithms for fluids. Journal of Computational Physics, 31 (3): 335–362.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yudi Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, S., Liu, Y. Spurious dianeutral mixing in a global ocean model using spherical centroidal voronoi tessellations. J. Ocean Univ. China 15, 923–935 (2016). https://doi.org/10.1007/s11802-016-3031-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-016-3031-8

Keywords

Navigation