Skip to main content

A review of comminution age method and its potential application in the East China Sea to constrain the time scale of sediment source-to-sink process

Abstract

The East China Sea (ECS) is a river-dominated epicontinental sea, linking the Asian continent to the northwestern Pacific via the large rivers originating from Tibetan Plateau. The relevant huge influx of riverine detritus has developed unique sedimentary systems in the ECS during the Quaternary, offering ideal terrestrial archives for reconstructing Quaternary paleoenvironmental changes and studying land-sea interactions. Overall, two characteristic river systems dominate the sedimentary systems and sediment source to sink transport patterns in the ECS, represented by the Changjiang (Yangtze River) and Huanghe (Yellow River) for the large river system and Taiwan rivers for the small river system. Given this, the sediments derived from both river systems bear distinct features in terms of parent rock lithology, provenance weathering and sediment transport. Previous studies mostly focus on either the ‘source’ discrimination or the ‘sink’ records of the sedimentary system in the ECS, while the source to sink process linking the land and sea, in particular its time scale, has been poorly understood. Here we introduce a newly-developed dating technique, the ‘comminution age’ method, which offers a quantitative constraint on the time scale of sediment transfer from its ultimate source to the final depositional sink. This novel method is of great significance for improving our understanding on the earth surface processes including tectonic-climate driven weathering, and sediment recycling in relation to landscape evolution and marine environmental changes. The application of comminution age method in the ECS will provide important constraints on sediment source-to-sink process and more evidences for the construction of late Quaternary paleoenvironmental changes under these unique sedimentary systems.

This is a preview of subscription content, access via your institution.

References

  • Aciego, S., Bourdon, B., Schwander, J., Baur, H., and Forieri, A., 2011. Toward a radiometric ice clock: Uranium ages of the Dome C ice core. Quaternary Science Reviews, 30: 2389–2397.

    Article  Google Scholar 

  • Andersen, M. B., Vance, D., Keech, A. R., Rickli, J., and Hudson, G., 2013. Estimating U fluxes in a high-latitude, boreal post-glacial setting using U-series isotopes in soils and rivers. Chemical Geology, 354: 22–32.

    Article  Google Scholar 

  • Bourdon, B., Bureau, S., Andersen, M. B., Pili, E., and Hubert, A., 2009. Weathering rates from top to bottom in a carbonate environment. Chemical Geology, 258: 275–287.

    Article  Google Scholar 

  • Bourdon, B., Turner, S., Henderson, G. M., and Lundstrom, C. C., 2003. Introduction to U-series geochemistry. Reviews in Mineralogy and Geochemistry, 52: 1–21.

    Article  Google Scholar 

  • Cartwright, J., 1962. Particle shape factors. Annals of Occupational Hygiene, 5: 163–171.

    Google Scholar 

  • Dadson, S. J., Hovius, N., Chen, H., Dade, W. B., Hsieh, M. L., Willett, S. D., Hu, J. C., Horng, M. J., Chen, M. C., and Stark, C. P., 2003. Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature, 426: 648–651.

    Article  Google Scholar 

  • DePaolo, D. J., Lee, V. E., Christensen, J. N., and Maher, K., 2012. Uranium comminution ages: Sediment transport and deposition time scales. Comptes Rendus Geoscience, 344: 678–687.

    Article  Google Scholar 

  • DePaolo, D. J., Maher, K., Christensen, J. N., and McManus, J., 2006. Sediment transport time measured with U-series isotopes: Results from ODP North Atlantic drift site 84. Earth and Planetary Science Letters, 248: 394–410.

    Article  Google Scholar 

  • Dosseto, A., Bourdon, B., and Turner, S. P., 2008. Uraniumseries isotopes in river materials: Insights into the timescales of erosion and sediment transport. Earth and Planetary Science Letters, 265: 1–17.

    Article  Google Scholar 

  • Dosseto, A., Bourdon, B., Gaillardet, J., Allègre, C., and Filizola, N., 2006a. Time scale and conditions of weathering under tropical climate: Study of the Amazon Basin with U-series. Geochimica et Cosmochimica Acta, 70: 71–89.

    Article  Google Scholar 

  • Dosseto, A., Bourdon, B., Gaillardet, J., Maurice-Bourgoin, L., and Allègre, C., 2006b. Weathering and transport of sediments in the Bolivian Andes: Time constraints from uranium-series isotopes. Earth and Planetary Science Letters, 248: 759–771.

    Article  Google Scholar 

  • Dosseto, A., Hesse, P., Maher, K., Fryirs, K., and Turner, S., 2010. Climatic and vegetation control on sediment dynamics during the last glacial cycle. Geology, 38: 395–398.

    Article  Google Scholar 

  • Dou, Y., Yang, S., Liu, Z., Clift, P. D., Shi, X., Yu, H., and Berne, S., 2010a. Provenance discrimination of siliciclastic sediments in the middle Okinawa Trough since 30ka: Constraints from rare earth element compositions. Marine Geology, 275: 212–220.

    Article  Google Scholar 

  • Dou, Y., Yang, S., Liu, Z., Clift, P. D., Yu, H., Berne, S., and Shi, X., 2010b. Clay mineral evolution in the central Okinawa Trough since 28ka: Implications for sediment provenance and paleoenvironmental change. Palaeogeography, Palaeoclimatology, Palaeoecology, 288: 108–117.

    Article  Google Scholar 

  • Dou, Y., Yang, S., Liu, Z., Li, J., Shi, X., Yu, H., and Berne, S., 2012. Sr-Nd isotopic constraints on terrigenous sediment provenances and Kuroshio Current variability in the Okinawa Trough during the late Quaternary. Palaeogeography, Palaeoclimatology, Palaeoecology, 356–366: 38–47.

    Article  Google Scholar 

  • Edwards, R. L., Chen, J. H., and Wasserburg, G. J., 1987. 238U-234U-230Th-232Th systematics and the precise measurement of time over the past 500,000 years. Earth and Planetary Science Letters, 81: 175–192.

    Article  Google Scholar 

  • Gao, S., 2014. Holocene shelf-coastal sedimentary systems associated with the Changjiang River: An overview. Acta Oceanologica Sinica, 32: 4–12.

    Article  Google Scholar 

  • Gao, S., and Collins, M. B., 2014. Holocene sedimentary systems on continental shelves. Marine Geology, 352: 268–294.

    Article  Google Scholar 

  • Granet, M., Chabaux, F., Stille, P., Dosseto, A., France-Lanord, C., and Blaes, E., 2010. U-series disequilibria in suspended river sediments and implication for sediment transfer time in alluvial plains: The case of the Himalayan rivers. Geochimica et Cosmochimica Acta, 74: 2851–2865.

    Article  Google Scholar 

  • Granet, M., Chabaux, F., Stille, P., France-Lanord, C., and Pelt, E., 2007. Time-scales of sedimentary transfer and weathering processes from U-series nuclides: Clues from the Himalayan rivers. Earth and Planetary Science Letters, 261: 389–406.

    Article  Google Scholar 

  • Handley, H. K., Turner, S., Afonso, J. C., Dosseto, A., and Cohen, T., 2013a. Sediment residence times constrained by uranium-series isotopes: A critical appraisal of the comminution approach. Geochimica et Cosmochimica Acta, 103: 245–262.

    Article  Google Scholar 

  • Handley, H. K., Turner, S. P., Dosseto, A., Haberlah, D., and Afonso, J. C., 2013b. Considerations for U-series dating of sediments: Insights from the Flinders Ranges, South Australia. Chemical Geology, 340: 40–48.

    Article  Google Scholar 

  • Horng, C. S., and Huh, C. A., 2011. Magnetic properties as tracers for source-to-sink dispersal of sediments: A case study in the Taiwan Strait. Earth and Planetary Science Letters, 309: 141–152.

    Google Scholar 

  • Huh, C. A., and Su, C. C., 1999. Sedimentation dynamics in the East China Sea elucidated from 210Pb, 137Cs and 239,240Pu. Marine Geology, 160: 183–196.

    Article  Google Scholar 

  • Ijiri, A., Wang, L. J., Oba, T., Kawahata, H., Huang, C. Y., and Huang, C. Y., 2005. Paleoenvironmental changes in the northern area of the East China Sea during the past 42,000 years. Palaeogeography Palaeoclimatology Palaeoecology, 219: 239–261.

    Article  Google Scholar 

  • Ivanovich, M., and Harmon, R. S., 1992. Uranium-Series Disequilibrium: Applications to Earth, Marine, and Environmental Sciences. Oxford University Press, Oxford, 910pp.

    Google Scholar 

  • Kigoshi, K., 1971. Alpha-recoil thorium-234: Dissolution into water and the Uranium-234/Uranium-238 disequilibrium in nature. Science, 173: 47–49.

    Article  Google Scholar 

  • Lee, V. E., DePaolo, D. J., and Christensen, J. N., 2010. Uranium-series comminution ages of continental sediments: Case study of a Pleistocene alluvial fan. Earth and Planetary Science Letters, 296: 244–254.

    Article  Google Scholar 

  • Li, G., Liu, Y., Yang, Z., Yue, S., Yang, W., and Han, X., 2005. Ancient Changjiang channel system in the East China Sea continental shelf during the last glaciation. Science in China Series D: Earth Sciences, 48: 1972–1978.

    Article  Google Scholar 

  • Li, G., Sun, X., Liu, Y., Bickert, T., and Ma, Y., 2009. Sea surface temperature record from the north of the East China Sea since late Holocene. Chinese Science Bulletin, 54: 4507–4513.

    Article  Google Scholar 

  • Liu, J., Saito, Y., Kong, X. H., Wang, H., Xiang, L. H., Wen, C., and Nakashima, R., 2010. Sedimentary record of environmental evolution off the Yangtze River estuary, East China Sea, during the last similar to 13,000 years, with special reference to the influence of the Yellow River on the Yangtze River delta during the last 600 years. Quaternary Science Reviews, 29: 2424–2438.

    Article  Google Scholar 

  • Maher, K., DePaolo, D. J., and Christensen, J. N., 2006a. U-Sr isotopic speedometer: Fluid flow and chemical weathering rates in aquifers. Geochimica et Cosmochimica Acta, 70: 4417–4435.

    Article  Google Scholar 

  • Maher, K., Steefel, C. I., DePaolo, D. J., and Viani, B. E., 2006b. The mineral dissolution rate conundrum: Insights from reactive transport modeling of U isotopes and pore fluid chemistry in marine sediments. Geochimica et Cosmochimica Acta, 70: 337–363.

    Article  Google Scholar 

  • Milliman, J. D., and Farnsworth, K. L., 2011. River Discharge to the Coastal Ocean: A Global Synthesis. Cambridge University Press, New York, 392pp.

    Book  Google Scholar 

  • Olley, J. M., Roberts, R. G., and Murray, A. S., 1997. A novel method for determining residence times of river and lake sediments based on disequilibrium in the thorium decay series.Water Resources Research, 33: 1319–1326.

    Article  Google Scholar 

  • Suresh, P., Dosseto, A., Handley, H., and Hesse, P., 2014. Assessment of a sequential phase extraction procedure for uranium-series isotope analysis of soils and sediments. Applied Radiation and Isotopes, 83: 47–55.

    Article  Google Scholar 

  • Vigier, N., and Bourdon, B., 2011. Constraining rates of chemical and physical erosion using U-series radionuclides. In: Handbook of Environmental Isotope Geochemistry, Advances in Isotope Geochemistry. Baskaran, M., ed., Springer-Verlag, Berlin, 553–571.

    Google Scholar 

  • Vigier, N., Bourdon, B., Lewin, E., Dupré, B., Turner, S., Chakrapani, G., Van Calsteren, P., and Allegre, C., 2005. Mobility of U-series nuclides during basalt weathering: An example from the Deccan Traps (India). Chemical Geology, 219: 69–91.

    Article  Google Scholar 

  • Vigier, N., Bourdon, B., Turner, S., and Allègre, C. J., 2001. Erosion timescales derived from U-decay series measurements in rivers. Earth and Planetary Science Letters, 193: 549–563.

    Article  Google Scholar 

  • Vigier, N., Burton, K., Gislason, S., Rogers, N., Duchene, S., Thomas, L., Hodge, E., and Schaefer, B., 2006. The relationship between riverine U-series disequilibria and erosion rates in a basaltic terrain. Earth and Planetary Science Letters, 249: 258–273.

    Article  Google Scholar 

  • Wang, H., Saito, Y., Zhang, Y., Bi, N., Sun, X., and Yang, Z., 2011. Recent changes of sediment flux to the western Pacific Ocean from major rivers in East and Southeast Asia. Earth-Science Reviews, 108: 80–100.

    Article  Google Scholar 

  • Wang, Z., Yang, S., Zhang, Z., Lan, X., Gu, Z., and Zhang, X., 2013. Paleo-fluvial sedimentation on the outer shelf of the East China Sea during the last glacial maximum. Chinese Journal of Oceanology and Limnology, 31: 886–894.

    Article  Google Scholar 

  • White, A. F., and Peterson, M. L., 1990. Role of reactive- surface- area characterization in geochemical kinetic models. In: Chemical Modeling of Aqueous Systems II. Melchoir, D. C., and Bassett, R. L., eds., American Chemical Society, Washington DC, 461–475.

    Chapter  Google Scholar 

  • Xu, K. H., Li, A. C., Liu, J. P., Milliman, J. D., Yang, Z. S., Liu, C. S., Kao, S. J., Wan, S. M., and Xu, F. J., 2012. Provenance, structure, and formation of the mud wedge along inner continental shelf of the East China Sea: A synthesis of the Yangtze dispersal system. Marine Geology, 291: 176–191.

    Article  Google Scholar 

  • Yang, S. L., Milliman, J. D., Xu, K. H., Deng, B., Zhang, X. Y., and Luo, X. X., 2014. Downstream sedimentary and geomorphic impacts of the Three Gorges Dam on the Yangtze River. Earth-Science Reviews, 138: 469–486.

    Article  Google Scholar 

  • Yang, Z., Wang, H., Saito, Y., Milliman, J. D., Xu, K., Qiao, S., and Shi, G., 2006. Dam impacts on the Changjiang (Yangtze) River sediment discharge to the sea: The past 55 years and after the Three Gorges Dam. Water Resources Research, 42: W04407, DOI: 10.1029/2005WR003970.

    Google Scholar 

  • Yang, Z. S., Lei, K., Guo, Z. G., and Wang, H. J., 2007. Effect of a winter storm on sediment transport and resuspension in the distal mud area, the East China Sea. Journal of Coastal Research, 23: 310–318.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shouye Yang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, C., Yang, S., Lian, E. et al. A review of comminution age method and its potential application in the East China Sea to constrain the time scale of sediment source-to-sink process. J. Ocean Univ. China 14, 399–406 (2015). https://doi.org/10.1007/s11802-015-2769-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-015-2769-8

Keywords

  • sediment transport time
  • 234U/238U
  • East China Sea
  • source to sink