Skip to main content
Log in

Brightness temperature model of sea foam layer at L-band

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

Permittivity of a sea foam layer is very important in investigating ocean brightness temperature model. At microwave frequency, the Rayleigh method is developed to estimate the effective permittivity of the sea foam layer. To simplify the tedious calculation of sea foam effective permittivity at L band (1.4 GHz), Pade’ approximation is adopted to fit the sea foam effective permittivity computed by the Rayleigh method. With this fitting formula, a new brightness temperature model of sea foam layer defined by certain geophysical parameters, such as air volume fraction (AVF), sea surface temperature (SST), sea surface salinity (SSS) and thickness of foam layer d, is given. Furthermore, the sensitivities of the brightness temperature model to SST, SSS, d and AVF of a sea foam layer at L band are discussed. The sensitivities are ranked from most to least in the order: (1) d; (2) AVF; (3) SSS; (4) SST. This result indicates that the measurement errors of d and AVF have significant impacts on the retrievals of SSS and SST. With the experimental brightness temperature data, the SSS and AFV are retrieved by cost function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anguelova, M. D., 2008. Complex dielectric constant of sea foam at microwave frequencies. Journal of Geophysical Research, 113, C08001.

    Article  Google Scholar 

  • Camps, A., Vall-llossera, M., Villarino, R., Reul, N., Chapron, B., Corbella, I., Duffo, N., and Torres, F., 2005. The emissivity of foam-covered water surface at L-band: Theoretical modeling and experimental results from the FROG 2003 field experiment. IEEE Transactions on Geoscience and Remote Sensing, 43(5): 925–937.

    Article  Google Scholar 

  • Chen, D., Tsang, L., Zhou, L., Reising, S. C., Asher, W. E., Rose, L. A., Ding, K. H., and Chen, C. T., 2003. Microwave emission and scattering of foam based on Monte Carlo simulations of dense media. IEEE Transactions on Geoscience and Remote Sensing, 41(4): 782–789.

    Article  Google Scholar 

  • Debye, P., 1929. Polar Molecules. Chemical Catalog Company, New York, 172pp.

    Google Scholar 

  • Fisher, K. D., and Stroud, D., 1997. Conductivity and magnetoresistance of a periodic composite by network discretization. Physical Review B, 56(22): 14366–14373.

    Article  Google Scholar 

  • Gu, G. Q., and Liu, Z. R., 1992. Effects of contact resistance on thermal conductivity of composite media with a periodic structure. Journal of Physics D-Applied Physics, 25(2): 249–255.

    Article  Google Scholar 

  • Gu, G. Q., and Tao, R., 1988. New method for evaluating the DC effective conductivities of composites with periodic structure. Physical Review B, 37(15): 8612–8617.

    Article  Google Scholar 

  • Gu, G. Q., and Yu, K. W., 1991. Effective conductivity of the composite medium with layered inclusions. ACTA Physica Sinica, 40(5): 709–717 (in Chinese with English abstract).

    Google Scholar 

  • Gu, G. Q., and Yu, K. W., 1997. Thermal conductivity of polydisperse composites with periodic microstructures. Journal of Physics D-Applied Physics, 30(10): 1523–1530.

    Article  Google Scholar 

  • Guo, J., Tsang, L., Asher, W., Ding, K. H., and Chen, C. T., 2001. Applications of dense media radiative transfer theory for passive microwave remote sensing of foam covered ocean. IEEE Transactions on Geoscience and Remote Sensing, 39(5): 1019–1027.

    Article  Google Scholar 

  • Huang, X. Z., and Jin, Y. Q., 1995. Scattering and emission from two-scale randomly rough sea surface with foam scatters. IEE Proceedings-Microwaves, Antennas and Propagat, 142(2): 109–114.

    Article  Google Scholar 

  • Keller, J. B., 1963. Conductivity of a medium containing a dense array of perfectly conducting spheres or cylinders or nonconducting cylinders. Journal of Applied Physics, 34(4): 991–993.

    Article  Google Scholar 

  • Kong, J. A., 1990. Electromagnetic Wave Theory. Wiley-Interscience, New York, 704pp.

    Google Scholar 

  • Krahenbuhl, L., Beroual, A., and Brosseau, C., 1997. Effective dielectric constant of random composite materials. Journal of Applied Physics, 81(5): 2375–2383.

    Article  Google Scholar 

  • Lam, J., 1986. Magnetic permeability of a simple cubic lattice of conducting magnetic spheres. Journal of Applied Physics, 60 (12): 4230–4235.

    Article  Google Scholar 

  • Landau, L. D., and Lifshitz, E. M., 1960. Electrodynamics of Continuous Media. Pergamon Press, Oxford, 417pp.

    Google Scholar 

  • Liu, S. B., Wei, E. B., and Jia, Y. X., 2013. Estimating microwave emissivity of sea foam by Rayleigh method. Journal of Applied Remote Sensing, 7, 073598.

    Article  Google Scholar 

  • Liu, Y., Wei, E. B., Hong, J. L., and Ge, Y., 2006. Microwave backscattering from the sea surface with breaking waves. Chinese Physics, 15(9): 2175–2179.

    Article  Google Scholar 

  • Mckenzie, D. R., and Mcphedran, R. C., 1977. Exact modelling of cubic lattice permittivity and conductivity. Nature, 265: 128–129.

    Article  Google Scholar 

  • Mcphedran, R. C., and Mckenzie, D. R., 1978. The conductivity of lattices of spheres. I. The simple cubic lattice. Royal Society (London), Proceedings, Series A-Mathematical and Physical Sciences, 359(1696): 45–63.

    Article  Google Scholar 

  • Meredith, R. E., and Tobias, C. W., 1960. Resistance to potential flow through a cubical array of spheres. Journal of Applied Physics, 31(7): 1270–1273.

    Article  Google Scholar 

  • Militskii, Y. A., Raizer, V. Y., Sharkov, E. A., and Etkin, V. S., 1978. Thermal radio emission from foam structures. Soviet Physics-Technical Physics English Translation, 23: 601–602.

    Google Scholar 

  • Pandey, P. C., and Kakar, R. K., 1982. An empirical microwave emissivity model for a foam-covered sea. IEEE Journal of Oceanic Engineering, OE-7(3): 135–140.

    Article  Google Scholar 

  • Podzimek, J., 1984. Size spectra of bubbles in the foam patches and of sea salt nuclei over the surf zone. Tellus, 36B(3): 192–202.

    Article  Google Scholar 

  • Poon, Y. M., Shin, F. G., and Wei, E. B., 2003. Effective conductivity of a composite of poly-dispered spherical particles in a linear continuum. Journal of Materials Science, 38(4): 675–681.

    Article  Google Scholar 

  • Rayleigh, L., 1892. On the influence of obstacles arranged in rectangular order upon the properties of a medium. Philosophical Magazine, 34(211): 481–502.

    Article  Google Scholar 

  • Rose, L. A., Gaiser, P. W., St. Germain, K. M., Dowgiallo, D. J., Asher, W., Reising, S. C., Horgan, K. A., Knapp, E. J., and Farquharson, G., 2002. Radiometric measurements of the microwave emissivity of foam. IEEE Transactions on Geoscience and Remote Sensing, 40(12): 2619–2625.

    Article  Google Scholar 

  • Smith, P. M., 1988. The emissivity of sea foam at 19 and 37 GHz. IEEE Transactions on Geoscience and Remote Sensing, 26(5): 541–547.

    Article  Google Scholar 

  • Stogryn, A., 1972. The emissivity of sea foam at microwave frequencies. Journal of Geophysical Research, 77(9): 1658–1666.

    Article  Google Scholar 

  • Suen, W. M., Wong, S. P., and Young, K., 1979. The lattice model of heat conduction in a composite material. Journal of Physics D -Applied Physics, 12(8): 1325–1338.

    Article  Google Scholar 

  • Torquato, S., and Hyun, S., 2001. Effective-medium approximation for composite media: Realizable single-scale dispersions. Journal of Applied Physics, 89(3): 1725–1729.

    Article  Google Scholar 

  • Tsang, L., Chen, C. T., Chang, A. T. C., Guo, J., and Ding, K. H., 2000. Dense media relative transfer theory based on quasi-crystalline approximation with applications to passive microwave remote sensing of snow. Radio Science, 35(3): 731–749.

    Article  Google Scholar 

  • Tsang, L., Kong, J. A., and Shin, R., 1985. Theory of Microwave Remote Sensing. Wiley-Interscience, New York, 632pp.

    Google Scholar 

  • Wei, E. B., 2011. Microwave vector radiative transfer equation of a sea foam layer by the second-order Rayleigh approximation. Radio Science, 46, RS5012.

    Article  Google Scholar 

  • Wei, E. B., 2013. Effective medium approximation model of sea foam layer microwave emissivity of a vertical profile. International Journal of Remote Sensing, 34(4): 1180–1193.

    Article  Google Scholar 

  • Wei, E. B., and Ge, Y., 2005. A microwave emissivity model of sea surface under wave breaking. Chinese Physics, 14(6): 1259–1264.

    Article  Google Scholar 

  • Wei, E. B., and Liu, Y., 2007. Application of effective medium approximation theory to ocean remote sensing under wave breaking. Science in China Series D: Earth Science, 50(3): 474–480.

    Article  Google Scholar 

  • Wilheit, J. T. T., 1979. A model for the microwave emissivity of the ocean’s surface as a function of wind speed. IEEE Transactions on Geoscience Electronics, GE-17(4): 244–249.

    Article  Google Scholar 

  • Williams, G. F., 1971. Microwave emissivity measurements of bubbles and foam. IEEE Transactions on Geoscience Electronics, GE-9(4): 221–224.

    Article  Google Scholar 

  • Zhang, D., and Cherkaev, E., 2008. Padé approximations for identification of air bubble volume from temperature-or frequency-dependent permittivity of a two-component mixture. Inverse Problems in Science and Engineering, 16(4): 425–445.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enbo Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Jia, Y., Qi, Z. et al. Brightness temperature model of sea foam layer at L-band. J. Ocean Univ. China 14, 38–46 (2015). https://doi.org/10.1007/s11802-015-2383-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-015-2383-9

Key words

Navigation