Skip to main content
Log in

The influence of El Niño on MJO over the equatorial pacific

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

In this paper, the influence of El Niño event on the Madden-Julian Oscillation (MJO) over the equatorial Pacific is studied by using reanalysis data and relevant numerical simulation results. It is clearly shown that El Niño can reduce the intensity of MJO. The kinetic energy of MJO over the equatorial Pacific is stronger before the occurrence of the El Niño event, but it is reduced rapidly after El Niño event outbreak, and the weakened MJO even can continue to the next summer. The convection over the central-western Pacific is weakened in El Niño winter. The positive anomalous OLR over the central-western Pacific has opposite variation in El Niño winter comparing to the non-ENSO cases. The vertical structure of MJO also affected by El Niño event, so the opposite direction features of the geopotential height and the zonal wind in upper and lower level troposphere for the MJO are not remarkable in the El Niño winter and tend to be barotropic features. El Niño event also has an influence on the eastward propagation of the MJO too. During El Niño winter, the eastward propagation of the MJO is not so regular and unanimous and there exists some eastward propagation, which is faster than that in non-ENSO case. Dynamic analyses suggest that positive SSTA (El Niño case) affects the atmospheric thickness over the equatorial Pacific and then the excited atmospheric wave-CISK mode is weakened, so that the intensity of MJO is reduced; the combining of the barotropic unstable mode in the atmosphere excited by external forcing (SSTA) and the original MJO may be an important reason for the MJO vertical structure tending to be barotropic during the El Niño.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bhalme, H. N., and Jadhav, S. K., 1984. The southern oscillation and its relation to the monsoon rainfall. Journal of Climatology, 4: 509–520.

    Article  Google Scholar 

  • Bjerknes, J., 1966. A possible response of the atmospheric Hadley circulation to equatorial anomalies of ocean temperature. Tellus, 18: 820–829.

    Article  Google Scholar 

  • Charles, C. D., Hunter, D. E., and Fairbanks, R. G., 1997. Interaction between the ENSO and the Asian monsoon in a coral record of tropical climate. Science, 277: 925–928, DOI: 10.1126/science.277.5328.925.

    Article  Google Scholar 

  • Chen, D., Cane, M. A., Kaplan, A., Zebiak, S. E., and Huang. D., 2004. Predictability of El Niño over the past 148 years. Nature, 428: 733–736.

    Article  Google Scholar 

  • Duchon, C. E., 1979. Lanczos filtering in one and two dimensions. Journal of Applied Meteorology, 18: 1016–1022.

    Article  Google Scholar 

  • Gadgil, S., 1988. Recent advances in monsoon research with particular reference to the Indian monsoon. Australian Meteor Magazine, 36: 193–204.

    Google Scholar 

  • Hoskins, B., James, I., and White, G., 1983. The shase propagation and mean-flow interaction of large-scale weather systems. Journal of the Atmospheric Sciences, 40: 1595–1612.

    Article  Google Scholar 

  • Jia, X. L., and Liang, X. Y., 2011. Possible impacts of the MJO on the severe ice-snow weather in November of 2009 in China. Journal of Tropical Meteorology, 27(5): 639–648 (in Chinese).

    Google Scholar 

  • Jia, X. L., Chen, L. J., Ren, F. M., and Li, C. Y., 2011. Impacts of the MJO on winter rainfall and circulation in China. Advances in Atmospheric Sciences, 28(3): 521–533.

    Article  Google Scholar 

  • Jin, F. F., 1997. An equatorial ocean recharge paradigm for ENSO. Part I: conceptual model. Journal of the Atmospheric Sciences, 54: 811–829.

    Article  Google Scholar 

  • Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Leetma, A., Reynolds, R., Jenne, R., and Joseph, D., 1996. The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society, 77: 437–471.

    Article  Google Scholar 

  • Kim, H. M., Hoyos, D., Webster, J., and Kang, I. S., 2010. Ocean-atmosphere coupling and boreal winter MJO. Climate Dynamics, 35: 771–784, DOI: 10.1007/s00382-009-0612-x.

    Article  Google Scholar 

  • Knutson, T. R., and Weickmann, K. M., 1987. 30–60 day atmospheric oscillation: Composite life cyclones of convection and circulation anomalies. Monthly Weather Review, 115: 1407–1436.

    Article  Google Scholar 

  • Lau, K. M., and Chan, P. H., 1985. Aspects of the 40–50 day oscillation during the northern winter as inferred from outgoing longwave radiation. Monthly Weather Review, 113: 1889–1909.

    Article  Google Scholar 

  • Lau, K. M., and Peng, L., 1987a. The 40–50 day oscillation and the El Niño/Southern Oscillation: A new perspective. Bulletin of the American Meteorological Society, 67: 533–534.

    Article  Google Scholar 

  • Lau, K. M., and Peng, L., 1987b. Origin of low frequency (intraseasonal) oscillation in the tropical atmosphere, Part I: The basic theory. Journal of the Atmospheric Sciences, 44: 950–972.

    Article  Google Scholar 

  • Li, C. Y., 1985. Actions of summer monsoon trough (ridges) and tropical cyclones over South Asia and the moving CISK mode. Science in China (Series B), 28: 1197–1207.

    Google Scholar 

  • Li, C. Y., 1989. Frequent activities of stronger aerotroughs in East Asia in wintertime and the occurrence of the El Niño event. Science in China (Series B), 32: 976–985.

    Google Scholar 

  • Li, C. Y., 1991. Low-Frequency Oscillation in the Atmosphere. China Meteorological Press, Beijing, 207pp.

    Google Scholar 

  • Li, C. Y., and Li, G. L., 1996. A dynamical study of El Niño on intraseasonal oscillation in tropical atmosphere. Scientia Atmopherica Sincia, 20: 159–168.

    Google Scholar 

  • Li, C. Y., and Li, G. L., 1998. The activities of low-frequency waves in the tropical atmosphere and ENSO. Advances in Atmospheric Sciences, 15: 193–203.

    Article  Google Scholar 

  • Li, C. Y., and Liao, Q. H., 1998. The exciting mechanism of tropical intraseasonal oscillation to El Niño event. Journal of Tropical Meteorology, 4: 113–121.

    Google Scholar 

  • Li, C. Y., and Mu, M. Q., 2000. Relationship between East-Asian winter monsoon, warm pool situation and EVSO cycle. Chinese Science Bulletin, 45: 1448–1455.

    Article  Google Scholar 

  • Li, C. Y., and Smith, I., 1995. Numerical simulation of the tropical intraseasonal oscillation and the effect of warm SSTS. Acta Meteorologica Sinica, 9: 1–12.

    Google Scholar 

  • Liebmann, B., and Smith, C. A., 1996. Description of a complete (interpolated) outgoing longwave radiation dataset. Bulletin of American Meteorological Society, 77: 1275–1277.

    Google Scholar 

  • Lin, H., and Brunet, G., 2011. Impact of the North Atlantic Oscillation on the forecast skill of the Madden-Julian Oscillation. Geophysical Research Letters, 38, L02802, DOI: 10.1029/2010GL046131.

    Google Scholar 

  • Madden, R. A., and Julian, P. R., 1971. Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. Journal of the Atmospheric Sciences, 28: 702–708.

    Article  Google Scholar 

  • Madden, R. A., and Julian, P. R., 1972. Description of global scale circulation cells in the tropics with 40-50 day period. Journal of the Atmospheric Sciences, 29: 1109–1123.

    Article  Google Scholar 

  • Madden, R. A., and Julian, P. R., 1994. Observations of the 40–50-day tropical oscillation-A review. Monthly Weather Review, 122: 814–837.

    Article  Google Scholar 

  • Matthews, A. J., 2008. Primary and successive events in the Madden-Julian Oscillation. Quarterly Journal of the Royal Meteorological Society, 134: 439–453, DOI: 10.1002/qj.224.

    Article  Google Scholar 

  • Mcphaden, M. J., Zhang, X. B., Hendon, H. H., and Wheeler, M. C., 2006. Larg scale dynamics and MJO forcing ENSO variability. Geophysical Research Letters, 33, L16702, DOI: 10.1029/2006GL026786.

    Article  Google Scholar 

  • Moon, J. Y., Wang, B., and Ha, K. J., 2012. MJO modulation on 2009/10 winter snowstorms in the United States. Journal of Climate, 25: 978–991, DOI: 10.1175/JCLI-D-11-00033.1.

    Article  Google Scholar 

  • Murakami, T., and Nakazawa, M. T., 1985. Tropical 45 day oscillation during the 1979 northern hemisphere summer. Journal of the Atmospheric Sciences, 42: 1107–1122.

    Article  Google Scholar 

  • Murakami, T., Chen, L., Xie, A., and Shrestha, M., 1986. Eastward propagation of 30–60 day perturbations as revealed from outgoing longwave radiation data. Journal of the Atmospheric Sciences, 43: 961–971.

    Article  Google Scholar 

  • Murakami, T., Nakawa, M. T., and He, J. H., 1984. On the 40–50 day oscillation during the 1979 northern hemisphere summer. Journal of the Meteorological Society of Japan, 62: 440–468.

    Google Scholar 

  • Pai, D. S., Sreejith, O. P., and Hatwar, H. R., 2011. Impact of MJO on the intraseasonal variation of summer monsoon rainfall over India. Climate Dynamics, 36: 41–55, DOI: 10.1007/s00382-009-0634-4.

    Article  Google Scholar 

  • Pegion, K., and Kirtman, B. P., 2008a. The impact of air-sea interactions on the simulation of tropical intraseasonal variability. Journal of Climate, 21: 6616–6635, DOI: 10.1175/2008JCLI2180.1.

    Article  Google Scholar 

  • Pegion, K., and Kirtman, B. P., 2008b. The impact of air-sea interactions on the predictability of the tropical intraseasonal oscillation. Journal of Climate, 21: 5870–5886, DOI: 10.1175/2008JCLI2209.1.

    Article  Google Scholar 

  • Rasmussen, E. M., and Carpenter, T. H., 1982. Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Monthly Weather Review, 110: 354–384.

    Article  Google Scholar 

  • Rasmussen, E. M., and Wallace, J. M., 1983. Meteorological aspects of El Niño/Southern Oscillation. Science, 222: 1195–1202.

    Article  Google Scholar 

  • Ray, P., and Zhang, C. D., 2010. A case study of the mechanics of extratropical influence on the initiation of the Madden-Julian Oscillation. Journal of the Atmospheric Sciences, 67: 515–528, DOI: 10.1175/2009JAS3059.1.

    Article  Google Scholar 

  • Ray, P., Zhang, C. D., Dudhia, J., and Chen, S. S., 2009. A numerical case study on the initiation of the Madden-Julian Oscillation. Journal of the Atmospheric Sciences, 66: 310–331, DOI: 10.1175/2008JAS2701.1.

    Article  Google Scholar 

  • Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V., Rowell, D. P., Kent, E. C., and Kaplan, A., 2003. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. Journal of Geophysical Research, 108(D14): 4407, DOI: 10.1029/2002JD002670.

    Article  Google Scholar 

  • Riddle, E. E., Stoner, M. B., Johnson, N. C., L’Heureux, M. L., Collins, D. C., and Feldstein, S. B., 2013. The impact of the MJO on clusters of wintertime circulation anomalies over North American region. Climate Dynamics, 40: 1749–1766, DOI: 10.1007/s00382-012-1493-y.

    Article  Google Scholar 

  • Seiki, A., Takayabu, Y. N., Yoneyama, K., and Shirooka, R., 2010. The impact of trade suges on the Madden-Julian Oscillation under different ENSO conditions. SOLA, 6: 49–52, DOI: 10.2151/sola.2010-012.

    Article  Google Scholar 

  • Seo, K. H., and Yan, X., 2005. MJO-related oceanic Kelvin waves and the ENSO cycle: Astudy with NCEP Global Ocean data Assimilation System. Geophysical Research Letters, 32, L07712, DOI: 10.1029/2005GL022511.

    Article  Google Scholar 

  • Serrano, J. G., Fonseca, B. R., Bladé, I., Gotor, P. Z., and Cámara, A., 2011. Rotational atmospheric circulation during North Atlantic-European winter: The influences of ENSO. Climate Dynamics. 37: 1727–1743, DOI: 10.1007/s00382-010-0968-y.

    Article  Google Scholar 

  • Tao, S. Y., and Zhang, Q. D., 1998. The responses of Asian winter/summer monsoon to the ENSO event. Chinese Journal of the Atmospheric Sciences, 22: 399–407 (in Chinese).

    Google Scholar 

  • Wang, L., Kodera, K., and Chen, W., 2012. Observed triggering of tropical convection by a cold surge: Implications for MJO initiation. Quarterly Journal of the Royal Meteorological Society, 138: 1740–1750, DOI: 10.1002/qj.1905.

    Article  Google Scholar 

  • Yu, L., and Rienecker, M. M., 1998. Evidence of an extratropical atmospheric influence during the onset of the 1997–98 El Niño. Geophysical Research Letters, 25: 3537–3540.

    Article  Google Scholar 

  • Zhang, C. D., 2013. Madden-Julian Oscillation: Bridging weather and climate. Bulletin of American Meteorological Society, DOI: http://dx.doi.org/10.1175/BAMS-D-12-00026.1.2013.

    Google Scholar 

  • Zhang, R. H., Sumi, A., and Kimoto, M., 1996. Impactof El Niño on the Asian monsoon: A diagnostic study of the ‘86/87’ and ‘91/92’ events. Journal of the Meteorological Society of Japan, 74: 49–62.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chongyin Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Li, C. & Tan, Y. The influence of El Niño on MJO over the equatorial pacific. J. Ocean Univ. China 14, 1–8 (2015). https://doi.org/10.1007/s11802-015-2381-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-015-2381-y

Key words

Navigation