Skip to main content
Log in

Effects of sulfate chitosan derivatives on nonalcoholic fatty liver disease

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

Sulfate chitosan derivatives have good solubility and therapeutic effect on the cell model of NAFLD. The aim of this study was to examine the therapeutic effect of sulfate chitosan derivatives on NAFLD. The male Wistar rats were orally fed high fat emulsion and received sulfate chitosan derivatives for 5 weeks to determine the pre-treatment effect of sulfate chitosan derivatives on NAFLD. To evaluate the therapeutic effect of sulfate chitosan derivatives on NAFLD, the rats were orally fed with high concentration emulsion for 5 weeks, followed by sulfate chitosan derivatives for 3 weeks. Histological analysis and biomedical assays showed that sulfate chitosan derivatives can dramatically prevent the development of hepatic steatosis in hepatocyte cells. In animal studies, pre-treatment and treatment with sulfate chitosan derivatives significantly protected against hepatic steatohepatitis induced by high fat diet according to histological analysis. Furthermore, increased TC, ALT, MDA, and LEP in NAFLD were significantly ameliorated by pre-treatment and treatment with sulfate chitosan derivatives. Furthermore, increased TG, AST, and TNF-α in NAFLD were significantly ameliorated by treatment with sulfate chitosan derivatives. Sulfate chitosan derivatives have good pre-treatment and therapeutic effect on NAFLD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Browning, J. D., and Horton, J. D., 2004. Molecular mediators of hepatic steatosis and liver injury. Journal of Clinical Investigation, 114(2): 147–152.

    Article  Google Scholar 

  • Clark, J. M., Brancati, F. L., and Diehl, A. M., 2003. The prevalence and etiology of elevated aminotransferase levels in the United States. The American Journal of Gastroenterology, 98(5): 960–967.

    Article  Google Scholar 

  • Deng, Z. B., Liu, Y., Liu, C., Xiang, X., Wang, J., Cheng, Z., Shah, S. V., Zhang, S., Zhang, L., Zhuang, X., Michalek, S., Grizzle, W. E., and Zhang, H. G., 2009. Immature myeloid cells induced by a high-fat diet contribute to liver inflammation. Hepatology, 50(5): 1412–1420.

    Article  Google Scholar 

  • Fabbrini, E., Mohammed, B. S., Korenblat, K. M., Magkos, F., McCrea, J., Patterson, B. W., and Klein, S., 2010. Effect of fenofibrate and niacin on intrahepatic triglyceride content, very low-density lipoprotein kinetics, and insulin action in obese subjects with nonalcoholic fatty liver disease. The Journal of Clinical Endocrinology and Metabolism, 95(6): 2727–2735.

    Article  Google Scholar 

  • Gäbele, E., Dostert, K., Dorn, C., Patsenker, E., Stickel, F., and Hellerbrand, C., 2011. A new model of interactive effects of alcohol and high-fat diet on hepatic fibrosis. Alcoholism, Clinical and Experimental Research, 35(7): 1361–1367.

    Article  Google Scholar 

  • Jin, X., Yang, Y., Chen, K., Lv, Z., Zheng, L., Liu, Y., Chen, S., Yu, C., Jiang, X., Zhang, C., and Li, Y., 2009. HDMCP uncouples yeast mitochondrial respiration and alleviates steatosis in L02 and hepG2 cells by decreasing ATP and H2O2 levels: A novel mechanism for NAFLD. Journal of Hepatology, 50(5): 1019–1028.

    Article  Google Scholar 

  • Khor, E., and Lim, L. Y., 2003. Implantable applications of chitin and chitosan. Biomaterials, 24(13): 2339–2349.

    Article  Google Scholar 

  • Kim, D., Choi, S. Y., Park, E. H., Lee, W., Kang, J. H., Kim, W., Kim, Y. J., Yoon, J. H., Jeong, S. H., Lee, D. H., Lee, H., Larson, J., Therneau, T. M., and Kim, W. R., 2012. Nonalcoholic fatty liver disease is associated with coronary artery calcification. Hepatology, 56(2): 605–613.

    Article  Google Scholar 

  • Kim, I., Seo, S. J., Moon, H. S., Yoo, M. K., Park, I. Y., Kim, B. C., and Cho, C. S., 2008. Chitosan and its derivatives for tissue engineering applications. Biotechnology Advances, 26(1): 1–21.

    Article  Google Scholar 

  • Kitade, M., Yoshiji, H., Kojima, H., Ikenaka, Y., Noguchi, R., Kaji, K., Yoshii, J., Yanase, K., Namisaki, T., Asada, K., Yamazaki, M., Tsujimoto, T., Akahane, T., Uemura, M., and Fukui, H., 2006. Leptin-mediated neovascularization is a prerequisite for progression of nonalcoholic steatohepatitis in rats. Hepatology, 44(4): 983–991.

    Article  Google Scholar 

  • Kumar, R., 2000. A review of chitin and chitosan applications. Reactive and Functional Polymers, 46(1): 1–27.

    Article  Google Scholar 

  • Ma, X., Hua, J., Mohamood, A. R., Hamad, A. R. A., Ravi, R., and Li, Z., 2007. A high-fat diet and regulatory t cells influence susceptibility to endotoxin-induced liver injury. Hepatology, 46(5): 1519–1529.

    Article  Google Scholar 

  • Manco, M., Marcellini, M., Giannone, G., and Nobili, V., 2007. Correlation of serum TNF-alpha levels and histologic liver injury scores in pediatric nonalcoholic fatty liver disease. American Journal of Clinical Pathology, 127(6): 954–960.

    Article  Google Scholar 

  • Masterton, G. S., Plevris, J. N., and Hayes, P. C., 2010. Review article: Omega-3 fatty acids — a promising novel therapy for non-alcoholic fatty liver disease. Alimentary Pharmacology and Therapeutics, 31(7): 679–692.

    Article  Google Scholar 

  • Mattar, S. G., Velcu, L. M., Rabinovitz, M., Demetris, A. J., Krasinskas, A. M., Barinas-Mitchell, E., Eid, G. M., Ramanathan, R., Taylor, D. S., and Schauer, P. R., 2005. Surgically-induced weight loss significantly improves nonalcoholic fatty liver disease and the metabolic syndrome. Transactions of the Meeting of the American Surgical Association, 123: 304–314.

    Article  Google Scholar 

  • Matteoni, C., Younossi, Z., Gramlich, T., Boparai, N., Liu, Y., and Mccullough, A., 1999. Nonalcoholic fatty liver disease: A spectrum of clinical and pathological severity. Gastroenterology, 116(6): 1413–1419.

    Article  Google Scholar 

  • Nakao, Y., Yoshida, S., Matsunaga, S., Shindoh, N., Terada, Y., Nagai, K., Yamashita, J. K., Ganesan, A., van Soest, R. W. M., and Fusetani, N., 2006. Azumamides A-E: Histone deacetylase inhibitory cyclic tetrapeptides from the marine sponge mycale izuensis. Angewandte Chemie, 118(45): 7715–7719.

    Article  Google Scholar 

  • Oh, E., Kim, T. H., Sohn, Y. W., Kim, Y. S., Oh, Y. R., Cho, E. Y., Shim, S. Y., Shin, S. R., Han, A. L., Yoon, S. J., and Kim, H. C., 2011. Association of serum alanine aminotransferase and Γ-glutamyltransferase levels within the reference range with metabolic syndrome and nonalcoholic fatty liver disease. The Korean Journal of Hepatology, 17(1): 27–36.

    Article  Google Scholar 

  • Petta, S., Muratore, C., and Craxì, A., 2009. Non-alcoholic fatty liver disease pathogenesis: The present and the future. Digestive and Liver Disease, 41(9): 615–625.

    Article  Google Scholar 

  • Rafiq, N., and Younossi, Z. M., 2008. Effects of weight loss on nonalcoholic fatty liver disease. Seminars in Liver Disease, 28(4): 427–433.

    Article  Google Scholar 

  • Rosselli, M. S., Burgueño, A. L., Carabelli, J., Schuman, M., Pirola, C. J., and Sookoian, S., 2009. Losartan reduces liver expression of plasminogen activator inhibitor-1 (PAI-1) in a high fat-induced rat nonalcoholic fatty liver disease model. Atherosclerosis, 206(1): 119–126.

    Article  Google Scholar 

  • Taylor, S., and Harker, A., 2006. Modification of the ultrafiltration technique to overcome solubility and non-specific binding challenges associated with the measurement of plasma protein binding of corticosteroids. Journal of Pharmaceutical and Biomedical Analysis, 41(1): 299–303.

    Article  Google Scholar 

  • Tevar, A. D., Clarke, C. N., Schuster, R., Wang, J., Edwards, M., J., and Lentsch, A. B., 2011. The effect of hepatic ischemia reperfusion injury in a murine model of nonalcoholic steatohepatitis. The Journal of Surgical Research, 169(1): e7–14.

    Article  Google Scholar 

  • Uno, M., Kurita, S., Misu, H., Ando, H., Ota, T., Matsuzawa-Nagata, N., Kita, Y., Nabemoto, S., Akahori, H., Zen, Y., Nakanuma, Y., Kaneko, S., and Takamura, T., 2008. Tranilast, an antifibrogenic agent, ameliorates a dietary rat model of nonalcoholic steatohepatitis. Hepatology, 48(1): 109–118.

    Article  Google Scholar 

  • Wang, H., Chan, P. K., Pan, S. Y., Kwon, K. H., Ye, Y., Chu, J. H., Fong, W. F., Tsui, W. M. S., and Yu, Z. L., 2010. ERp57 is up-regulated in free fatty acids-induced steatotic L-02 cells and human nonalcoholic fatty livers. Journal of Cellular Biochemistry, 110(6): 1447–1456.

    Article  Google Scholar 

  • Yu, C., Lv, Z., Wang, Y., and Jiang, T., 2010. Study on the therapeutic effect of sulfated chitosan derivative on experimental fatty liver in rats. Periodical of Ocean University of China, 40(5): 27–32.

    Google Scholar 

  • Zou, Y., Li, J., Lu, C., Wang, J., Ge, J., Huang, Y., Zhang, L., and Wang, Y., 2006. High-fat emulsion-induced rat model of nonalcoholic steatohepatitis. Life Sciences, 79(11): 1100–1107.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihua Lv.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, M., Wang, Y., Jiang, T. et al. Effects of sulfate chitosan derivatives on nonalcoholic fatty liver disease. J. Ocean Univ. China 13, 531–537 (2014). https://doi.org/10.1007/s11802-014-2511-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-014-2511-y

Key words

Navigation