Journal of Ocean University of China

, Volume 13, Issue 5, pp 791–798 | Cite as

Macroalgae blooms and their effects on seagrass ecosystems

  • Qiuying HanEmail author
  • Dongyan Liu


Seagrass decline caused by the macroalgae blooms is becoming a common phenomenon throughout temperate and tropical regions. We summarized the incidence of macroalgae blooms throughout the world and their impact on seagrass beds by direct and indirect ways. The competition for living space and using resources is the most direct effect on seagrass beds when macroalgae are blooming in an aquatic ecosystem. The consequence of macroalgae blooms (e.g., light reduction, hypoxia, and decomposition) can produce significant indirect effects on seagrass beds. Light reduction by the macroalgae can decrease the growth and recruitment of seagrasses, and decomposition of macroalgae mats can increase the anoxic and eutrophic conditions, which can further constrict the seagrass growth. Meanwhile, the presence of seagrass shoots can provide substrate for the macroalgae blooms. Controlling nutrient sources from the land to coastal waters is a general efficient way for coastal management. Researching into the synergistical effect of climate change and anthropognic nutrient loads on the interaction between searsasses and macroalgae can provide valuable information to decrease the negative effects of macroalgae blooms on seagrasses in eutrophic areas.

Key words

eutrophication decline seagrasses macroalgae blooms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alber, M., and Valiela, I., 1994. Production of microbial organic aggregates from macrophyte-derived dissolved organic material. Limnology and Oceanography, 39: 37–50.Google Scholar
  2. Alcoverro, T., Romero, J., Duarte, C. M., and López, N. I., 1997. Spatial and temporal variations in nutrient limitation of seagrass Posidonia oceanica growth in the NW Mediterranean. Marine Ecoogy Progress Series, 146: 155–161.Google Scholar
  3. Alcoverro, T., Zimmerman, R. C., Kohrs, D. G., and Alberte, R. S., 1999. Resouce allocation and sucrose mobilization in light-limited eelgrass Zostera marina. Marine Ecology Progress Series, 187: 121–131.Google Scholar
  4. Auer, M. T., 1982. Ecology of filamentous algae. Journal of Great Lakes Research, 8: 1–237.Google Scholar
  5. Baden, S. P., Loo, L. O., Pihl, L., and Rosenbergs, R., 1990. Effects of eutrophication on benthic communities including fish: Swedish west coast. Ambio, 19: 113–122.Google Scholar
  6. Bell, P. R. F., 1992. Eutrophication and coral reefs-some examples in the Great Barrier Reef Lagoon. Water Research, 26: 553–568.Google Scholar
  7. Berezina, N. A., Tsiplenkina, I. G., Pankova, E. S., and Gubelit, J. I., 2007. Dynamics of invertebrate communities on the stony littoral of the Neva Estuary (Baltic Sea) under macroalgal blooms and bioinvasions. Transitional Waters Bulletin, 1: 65–76.Google Scholar
  8. Brun, F. G., Hernández, I., Vergara, J. J., Peralta, G., and Pérez-Lloréns, J. L., 2002. Assessing the toxicity of ammonium pulses to the survival and growth of Zostera noltii. Marine Ecology Progress Series, 225: 177–187.Google Scholar
  9. Brun, F. G., Olivé, I., Malta, E., Vergara, J. J., Hernández, I., and Pérez-Llorénans, J. L., 2008. Increased vulnerability of Zostera noltii to stress caused by low light and elevated ammonium levels under phosphate deficiency. Marine Ecology Progress Series, 365: 67–75.Google Scholar
  10. Brush, M. J., and Nixon, S. W., 2010. Modeling the role of macroalgae in a shallow sub-estuary of Narragansett Bay, RI (USA). Ecological Modelling, 221: 1065–1079.Google Scholar
  11. Burkholder, J. M., Mason, K. M., and Glasgow Jr, H. B., 1992. Water-column nitrate enrichment promotes decline of eelgrass Zostera marina: Evidence from seasonal mesocosm experiments. Marine Ecology Progress Series, 81: 163–178.Google Scholar
  12. Burkholder, J. M., Tomasko, D. A., and Touchette, B. W., 2007. Seagrasses and eutrophication. Journal of Experimental Marine Biology and Ecology, 350: 46–72.Google Scholar
  13. Canal-Vergés, P., Vedel, M., Valdemarsen, T., Kristensen, E., and Flindt, M. R., 2010. Resuspension created by bed load traport of macroalgae: implications for ecosystem functioning. Hydrobiologia, 649: 69–76.Google Scholar
  14. Cardoso, P. G., Brandão, A., Pardal, M. A., Raffaelli, D., and Marques, J. C., 2005. Resilience of Hydrobia ulvae populations to anthropogenic and natural disturbances. Marine Ecology Progress Series, 289: 191–199.Google Scholar
  15. Ceccherlli, G., and Cinelli, F., 1997. Short-term effects of nutrient enrichment of the sediment and interactions between the seagrass Cymodocea nodosa and the introduced green alga Caulerpa taxifolia in a Mediterranean Bay. Journal of Experimental Marine Biology and Ecology, 217: 165–177.Google Scholar
  16. Christianen, M. J. A., Govers, L. L., Bouma, T. J., Kiswara, W., Roelofs, J. G. M., Lamers, L. P. M., and van Katwijk, M. M., 2012. Marine megaherbivore grazing may increase seagrass tolerance to high nutrient loads. Journal of Ecology, 100: 546–560.Google Scholar
  17. Costanza, R., d’Aege, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O’Neill, R. V., Jose, P., Raskin, R. G., Sutton, P., and van den Belt, M., 1997. The value of the world’s ecosystem services and natural capital. Nature, 387: 253–260.Google Scholar
  18. Cummins, S. P., Roberts, D. E., and Zimmerman, K. D., 2004. Effects of the green macroalga Enteromorpha intestinalis on macrobenthic and seagrass assemblages in a shallow coastal estuary. Marine Ecology Progress Series, 266: 77–87.Google Scholar
  19. Davis, B. C., and Fourqurean, J. W., 2001. Competition between the tropical alga, Halimeda incrassate and the seagrass, Thalassia testudinum. Aquatic Botany, 71: 217–232.Google Scholar
  20. den Hartog, C., 1994. Suffocation of a littoral Zostera bed by Enteromorphy radiate. Aquatic Botany, 47: 21–28.Google Scholar
  21. Druehl, L. D., 1973. Marine transplantations. Science, 179: 12.Google Scholar
  22. Duarte, C. M., 2002. The future of seagrass meadows. Environmental Conservation, 29: 192–206.Google Scholar
  23. Duarte, C. M., Marbà, N., Gacia, E., Fourqurean, J. W., Beggins, J., Barrón, C., and Apostolaki, E. T., 2010. Seagrass community metabolism: Assessing the carbon sink capacity of seagrass meadows. Global Biogeochemical Cycles, 24: GB4032, DOI: 10.1029/2010GB003793.Google Scholar
  24. Flindt, M. R., Salomonsen, J., Carrer, M., Bocci, M., and Kamp-Nielsen, L., 1997. Loss, growth and transport dynamics of Chaetomorpha aerea and Ulva rigida in the Lagoon of Venice during an early summer field campaign. Ecological Modelling, 102: 133–141.Google Scholar
  25. Fourqurean, J. W., Powell, G. V. N., Kenworthy, W. J., and Zieman, J. C., 1995. The effects of long-term manipulation of nutrient supply on competition between the seagrasses Thalassia testudinum and Halodule wrightii in Dlorida Bay. Oikos, 72: 349–358.Google Scholar
  26. Gambi, M. C., Nowell, A. R. M., and Jumars, P. A., 1990. Flume observations on flow dynamics in Zostera marina (eelgrass) beds. Marine Ecology Progress Series, 61: 159–169.Google Scholar
  27. Greve, T. M., Borum, J., and Pedersen, O., 2003. Meristematic oxygen variability in eelgrass (Zostera marina). Limnology and Oceanography, 48: 210–216.Google Scholar
  28. Han, Q. Y., Bouma, T. J., Brun, F. G., Suykerbuyk, W., and van Katwijk, M. M., 2012. Resilience of Zostera noltii to burial or erosion disturbances. Marine Ecology Progress Series, 449: 133–143.Google Scholar
  29. Hansen, K., and Kristensen, E., 1997. Impact of macrofaunal recolinization on benthic metabolism and nutrient fluxes in a shallow marine sediment previously overgrown with macroalgal mats. Estuarine, Coastal and Shelf Science, 45: 613–628.Google Scholar
  30. Harlin, M. M., and Thorne-Miller, B., 1981. Nutrient enrichment of seagrass beds in a rhode island coastal lagoon. Marine Biology, 65: 221–229.Google Scholar
  31. Hauxwell, J., Cebrian, J., and Baliela, I., 2001. Macroalgal canopies contribute to eelgrass (Zostera marina) decline in temperate estuarine ecosystems. Ecology, 82: 1007–1022.Google Scholar
  32. Hauxwell, J., Cebrian, J., and Valiela, I., 2003. Eelgrass Zostera marina loss in temperate estuaries: relationship to land derived nitrogen loads and effect of light limitation imposed by algae. Marine Ecology Progress Series, 247: 59–73.Google Scholar
  33. Hemminga, M. A., 1998. The root/rhizome system of seagrasses: An asset and a burden. Journal of Sea Research, 39: 183–196.Google Scholar
  34. Hessing-Lewis, M. L., Hacker, S. D., Menge, B. A., and Rumrill, S. S., 2011. Context-dependent eelgrass-macroalage interactions along an estuarine gradient in the pacific northwest, USA. Estuaries and Coasts, 34: 1169–1181.Google Scholar
  35. Hodgkin, E. P., Birch, P. B., Black, R. E., and Humphries, R. B., 1980. The Peel-Harvey estuarine system study (1976–1980). Report N. 9. Department of Conservation and Environment, Perth, Western Australia.Google Scholar
  36. Holmer, M., and Bondgaard, E. J., 2001. Photosynthetic and growth response of eelgrass to low oxygen and high sulphide concentrations during hypoxic events. Aquatic Botany, 70: 29–38.Google Scholar
  37. Huntington, B. E., and Boyer, K. E., 2008. Effects of red macroalgal (Gracilariopsis sp.) abundance on eelgrass Zostera marina in Tomales Bay, California, USA. Marine Ecology Progress Series, 367: 133–142.Google Scholar
  38. Invers, O., Kraemer, G. P., Pérez, M., and Romero, J., 2004. Effects of nitrogen addition on nitrogen metabolism and carbon reserves in the temperate seagrass Posidonia oceanica. Journal of Experimental Marine Biology and Ecology, 303: 97–114.Google Scholar
  39. Irlandi, E. A., Orlando, B. A., and Biber, P. D., 2004. Drift algae-epiphyte-seagrass interactions in a subtropical Thalassia testudinum meadow. Marine Ecology Progress Series, 279: 81–91.Google Scholar
  40. Jøgernsen, B. B., 1982. Mineralization of organic matter in the sea bed-the role sulphate reduction. Nature, 296: 643.Google Scholar
  41. Kamer, K., Boyle, K. A., and Fong, P., 2001. Macroalgal bloom dynamics in a highly eutrophic southern California Estuary. Estuaries, 24: 623–635.Google Scholar
  42. Koch, M. S., Schopmeyer, S., Kyhn-Hansen, C., and Madden, C. J., 2007. Synergistic effects of high temperature and sulphide on tropical seagrass. Journal of Experimental Marine Biology and Ecology, 341: 91–101.Google Scholar
  43. Krause-Jensen, D., Middelboe, A., and Christensen, P. B., 2000. Eelgrass, Zostera marina, growth along depth gradients: Upper boundaries of the variation as a powerful predictive tool. Oikos, 91: 233–244.Google Scholar
  44. Lamote, M., and Dunton, K. H., 2006. Effects of drift macroalgae and light attenuation on chlorophyll fluorescence and sediment sulfides in the seagrass Thalassia testudinu. Journal of Experimental Marine Biology and Ecology, 334: 174–186.Google Scholar
  45. Lapointe, B. E., and O’Connell, J., 1989. Nutrient-enhanced growth of Cladophora prolifera in Harrington Sound, Bermuda: Eutrophication of a confined, phosphorus-limited marine ecosystem. Estuarine, Coastal and Shelf Science, 28: 347–360.Google Scholar
  46. Lapointe, B. L., Barile, P. J., Littler, M. M., Littler, D. S., and Bedford, B. J., 2005. Macroalgal blooms on southeast Florida coral reefs: I. Nutrient stoichiometry of the invasive green alga Codium isthmocladum in the wider Caribbean indicates nutrient enrichment. Harmful Algae, 4: 1092–1105.Google Scholar
  47. Largo, D. B., Sembrano, J., Hiraoka, M., and Ohno, M., 2004. Taxonomic and ecological profile of ‘green tide’ species of Ulva (Ulvales, Chlorophyta) in central Philippines. Hydrobiologia, 512: 247–253.Google Scholar
  48. Lavery, P. S., and McComb, A. J., 1991. Macroalgal-sediment nutrient interactions and their importance to macroalgal nutrition in a eutrophic estuary. Estuarine, Coastal and Shelf Science, 32: 281–295.Google Scholar
  49. Lee, K. S., and Dunton, K. H., 1997. Effects of in situ light reduction on the maintenance, growth and partitioning of carbon resources in Thalassia testudinum Banks ex König. Journal of Experimental Marine Biology and Ecology, 210: 53–73.Google Scholar
  50. Lenzi, M., Palmieri, R., and Porrello, S., 2003. Restoration of the eutrophic Orbetello Lagoon (Tyrrhenian Sea, Italy): Water quality management. Marine Pollution Bulletin, 46: 1540–1548.Google Scholar
  51. Liu, D. Y., Keesing, J. K., Xing, Q. G., and Shi, P., 2009. World’s largest macroalgal bloom caused by expansion of seaweed aquaculture in China. Marine Pollution Bulletin, 58: 888–895.Google Scholar
  52. Marsh Jr., J. A., Dennison, W. C., and Alberte, R. S., 1986. Effects of temperature on photosynthesis and respiration in eelgrass (Zostera marina L.). Journal of Experimental Marine Biology and Ecology, 101: 257–267.Google Scholar
  53. Martínez-Lüscher, J., and Holmer, M., 2010. Potential effects of the invasive species Gracilaria vermiculophylla on Zostera marina metabolism and survival. Marine Environmental Research, 69: 345–349.Google Scholar
  54. Martins, I., Pardal, M. A., Lillebø, A. I., Flindt, M. R., and Marques, J. C., 2001. Hydrodynamics as a major factor controlling the occurrence of green macroalgal blooms in a eutrophic estuary: A case study on the influence of precipitation and river management. Estuarine, Coastal and Shelf Science, 52: 165–177.Google Scholar
  55. McGlathery, K. J., Krause-Jensen, D., Rysgaard, S., and Christensen, P. B., 1997. Patterns of ammonium uptake within dense mats of the filamentous macroalga Chaetomorpha linum. Aquatic Botany, 59: 99–115.Google Scholar
  56. McGlathery, K. J., 2001. Macroalgal blooms contribute to the decline of seagrass in nutrient-enriched coastal waters. Journal of Phycology, 37: 453–456.Google Scholar
  57. McGlathery, K. J., Anderson, C. I., and Tyler, A. C., 2001. Magnitude and variability of benthic and pelagic metabolism in a temperate coastal lagoon. Marine Ecology Progress Series, 216: 1–15.Google Scholar
  58. McGlathery, K. J., Sundbäck, K., and Anderson, I. C., 2007. Eutrophication in shallow coastal bays and lagoons: The role of plants in the coastal filter. Marine Ecology Progress Series, 348: 1–18.Google Scholar
  59. Meinesz, A. J., De Vaugelas, J., Hesse, B., and Mari, X., 1993. Spread of the introduced tropical green algae Caulerpa taxifolia in northern Mediterranean waters. Journal of Appllied Phycology, 5: 141–147.Google Scholar
  60. Merceron, M., Antoine, V., Auby, I., and Morand, P., 2007. In situ growth potential of the subtidal part of green tide forming Ulva spp. stocks. Science of the Total Environment, 384: 293–305.Google Scholar
  61. Morand, P., and Merceron, M., 2005. Macroalgal population and sustainability. Journal of Coastal Research, 21: 1009–1020.Google Scholar
  62. Multer, H. G., 1988. Growth, ultrastructure and sediment contribution of Halimeda incrassate and Halimeda monile, Nonsuch and Falmouth Bays, Antigua W. I. Coral Reefs, 6: 179–186.Google Scholar
  63. Murray, L., Dennison, W. C., and Kemp, W. M., 1992. Nitrogen versus phosphorus limitation for growth of an estuarine population of eelgrass (Zostera marina L.). Aquatic Botany, 44: 83–100.Google Scholar
  64. Nelson, T. A., and Lee, A., 2001. A manipulative experiment demonstrates that blooms of the macroalga Ulvaria obscura can reduce eelgrass shoot density. Aquatic Botany, 71: 149–154.Google Scholar
  65. Nelson, W. G. (ed.), 2009. Seagrasses and protective criteria: A review and assessment of research status. Office of research and development, National Health and Environmental Effects Research Laboratory, EPA/600/R-09/050.Google Scholar
  66. Orth, R. J., Carruthers, T. J. B., Dennison, W. C., Duarte, C. M., Fourqurean, J. W., Heck, Jr., K. L., Hughes, A. R., Kendrick, G. A., Kenworthy, W. J., Olyarnik, S., Short, F. T., Waycott, M., and Williams, S. L., 2006. A global crisis for seagrass ecosystems. BioScience, 56: 987–996.Google Scholar
  67. Peckol, P., DeMeo-Anderson, B., Rivers, J., Valiela, I., Maldonado, M., and Yates, J., 1994. Growth, nutrient uptake capacities and tissue constituents of the macroalgae, Cladophora vagabunda and Gracilaria tikvahiae, related to site-specific nitrogen loading rates. Marine Biology, 121: 175–185.Google Scholar
  68. Pederson, M. F., and Borum, J., 1993. An annual nitrogen budget for a seagrass Zostera marina population. Marine Ecology Progress Series, 101: 169–177.Google Scholar
  69. Pederson, M. F., 1995. Nitrogen limitation of photosynthesis and growth: Comparison across aquatic plant communities in a Danish Estuary (Roskilde Fjord). Ophelia, 41: 261–272.Google Scholar
  70. Pedersen, O., Binzer, T., and Borum, J., 2004. Sulphide intrusion in eelgrass (Zostera marina L.). Plant, Cell & Environent, 27: 595–602.Google Scholar
  71. Peralta, G., Pérez-Lloréns, J. L., Hernández, I., and Vergara, J. J., 2002. Effects of light availability on growth, architecture and nutrient content of the grass Zostera noltii Hornem. Journal of Experimental Marine Biology and Ecology, 269: 9–26.Google Scholar
  72. Peralta, G., Bouma, T. J., van Soelen, J., Pérez-Lloréns, J. L., and Hernández, I., 2003. On the use of sediment fertilization for seagrass restoration: A mesocosm study on Zostera marina L. Aquatic Botany, 75: 95–110.Google Scholar
  73. Pregnall, A. M., Smith, R. D., Kursar, T. A., and Alberte, R. S., 1984. Metabolic adaptations of Zostera marina (eelgrass) to diurnal periods of root anoxia. Marine Biology, 83: 141–147.Google Scholar
  74. Pregnall, A. M., and Rudy, P. P., 1985. Contribution of green macroalgal mats (Enteromorpha spp.) to seasonal production in an estuary. Marine Ecology Progress Series, 24: 167–176.Google Scholar
  75. Pregnall, A. M., and Miller, S. L., 1988. Flux of ammonium from surf-zone and nearshore sediments in Nahant Bay, Massachusetts, USA, in relation to free-living Pilayella littoralis. Marine Ecology Progress Series, 24: 167–176.Google Scholar
  76. Raffaelli, D. G., Raven, J. A., and Poole, L. J., 1998. Ecological impact of green macroalgal blooms. Oceanography and Marine Biology: An Annual Review, 36: 97–125.Google Scholar
  77. Raffaelli, D., 2000. Interactions between macro-algal mats and invertebrates in the Ythan estuary, Aberdeenshire, Scotland. Helgoland Marine Research, 54: 71–79.Google Scholar
  78. Reise, K., and Siebert, I., 1994. Mass occurrence of green algae in the German Wadden Sea. German Journal of Hydrography, (Supplement), 1: 171–180.Google Scholar
  79. Rose, C. D., and Dawes, C. J., 1999. Effects of community structure on the seagrass Thalassia testudinum. Marine Ecology Progress Series, 184: 83–95.Google Scholar
  80. Santos, R., 1993. A multivariate study of biotic and abiotic relationships in a subtidal algal stand. Marine Ecology Progress Series, 94: 181–190.Google Scholar
  81. Schmidt, A. L., Wysmyk, J. K. C., Craig, S. E., and Lotze, H. K., 2012. Regional-scale effects of eutrophication on ecosystem structure and services of seagrass beds. Limnology and Oceanography, 57: 1389–1402.Google Scholar
  82. Schories, D., Anibal, J., Chapman, A. S., Herre, E., Isaksson, I., Lillebo, A. I., Pihl, L., Reise, K., Sprung, M., and Thiel, M., 2000. Flagging greens: Hydrobiid snails as substrata for the development of green algal mats (Enteromorpha spp.) on tidal flats of North Atlantic coasts. Marine Ecology Progress Series, 199: 127–136.Google Scholar
  83. Sfriso, A., Marcomini, A., and Pavoni, B., 1987. Relationships between macroalgal biomass and nutrient concentrations in a hypertrophic area of Venice Lagoon. Marine Environmental Research, 22: 297–312.Google Scholar
  84. Sfriso, A., Pavoni, B., Marcomini, A., and Orio, A. A., 1992. Macroalgae, nutrient cycles, and pollutants in the lagoon of Venice. Estuaries, 15: 517–528.Google Scholar
  85. Short, F. T., 1983. The seagrass, Zostera Marina L.: Plant morphology and bed structure in relation to sediment ammonium in izembed lagoon, Alaska. Aquatic Botany, 16: 149–161.Google Scholar
  86. Short, F. T., Burdick, D. M., and Kaldy, III., 1995. Mesocosm experiments quantify the effects of eutrophication on eelgrass, Zostera marina. Limnology and Oceanography, 40: 740–749.Google Scholar
  87. Short, F. T., and Neckles, H. A., 1999. The effects of global climate change on seagrasses. Aquatic Botany, 63: 169–196.Google Scholar
  88. Smith, J. E., Runcie, J. W., and Smith, C. M., 2005. Characterization of a large-scale ephemeral bloom of the green alga Cladophora sericea on the coral reefs of West Maui, Hawai’i. Marine Ecology Progress Series, 302: 77–91.Google Scholar
  89. Sousa-Dias, A., and Melo, R. A., 2008. Long-term abundance patterns of macroalgae in relation to environmental variables in the Tagus Estuary (Portugal). Estuarine, Coastal and Shelf Science, 76: 21–28.Google Scholar
  90. Sugimoto, K., Hiraoka, K., Ohta, S., Niimura, Y., Terawaki, T., and Okada, M., 2007. Effects of ulvoid (Ulva spp.) accumulation on the structure and function of eelgrass (Zostera marina L.) bed. Marine Pollution Bulletin, 54: 1582–1585.Google Scholar
  91. Thiel, M., and Watling, L., 1998. Effects of green algal mats on infaunal colonization of a New England mud flat-long-lasting but highly localized effects. Hydrobiologia, 375/376: 177–189.Google Scholar
  92. Thomsen, M. S., Wernberg, T., Engelen, A. H., Tuya, F., Vanderklift, M. A., Holmer, M., McGlathery, K. J., Arenas, F., Kotta, J., and Silliman, B. R., 2012. A meta-analysis of seaweed impacts on seagrasses: generalities and knowledge gaps. PLoS One, 7: 1–8.Google Scholar
  93. Touchette, B. W., and Burkholder, J. M., 2000. Overview of the physiological ecology of carbon metabolism in seagrasses. Journal of Experimental Marine Biology and Ecology, 250: 169–205.Google Scholar
  94. Tomasko, D. A., Corbett, C. A., Greening, H. S., and Raulerson, G. E., 2005. Spatial and temporal variation in seagrass coverage in Southwest Florida: assessing the relative effects of anthropogenic nutrient load reductions and rainfall in four contiguous estuaries. Marine Pollution Bulletin, 50: 797–805.Google Scholar
  95. Twilley, R. J., Kemp, W. M., Staver, K. W., Stevenson, J. C., and Boynton, W. R., 1985. Nutrient enrichment of estuarine submersed vascular plant communities. 1. Algal growth and effects on production of plants and associated communities. Marine Ecology Progress Series, 23: 179–191.Google Scholar
  96. Tweedley, J. R. M., Jackson, E. L., and Attrill, M. J., 2008. Zostera marina seagrass beds enhance the attachment of the invasive alga Sargassum muticum in soft sediment. Marine Ecology Progress Series, 354: 305–309.Google Scholar
  97. van der Heide, T., Smolders, A. J. P., Rijkens, B. G. A., van Nes, E. H., van Katwijk, M. M., and Roelofs, J. G. M., 2008. Toxicity of reduced nitrogen in eelgrass (Zostera marina) is highly dependent on shoot density and pH. Oecologia, 158: 411–419.Google Scholar
  98. van der Heide, T., Govers, L. L., de Fouw, J., Olff, H., van der Geest, M., van Katwijk, M. M., Piersma, T., van de Koppel, J., Silliman, B. R., Smolders, A. J. P., and van Gils, J. A., 2012. Three-stage symbiosis forms the foundation of seagrass ecosystem. Science, 336: 1432–1434.Google Scholar
  99. van Katwijk, M. M., Vergeer, L. H. T., Schmitz, G. H. W., and Roelofs, J. G. M., 1997. Ammonium toxicity in eelgrass Zostera marina. Marine Ecology Progress Series, 157: 159–173.Google Scholar
  100. van Katwijk, M. M., Bos, A. R., Kennis, P., and de Vries, R., 2010. Vulnerability to eutrophication of a semi-annual life history: A lesson learnt from an extinct eelgrass (Zostera marina) population. Biological Conservation, 143: 248–254.Google Scholar
  101. Villazán, B., Brun, F. G., Jiménez-Ramos, R., Pérez-Lloréns, J. L., and Vergara, J. J., 2013. Interaction between ammonium and phosphate uptake rate in the seagrass Zostera noltii. Marine Ecology Progress Series, 488: 133–143.Google Scholar
  102. Walsh, B. L., 1980. Comparative nutrient dynamics of a marsh mudflat ecosystem. Estuarine, Coastal and Shelf Science, 10: 143–164.Google Scholar
  103. Waycott, M., Duarte, M., Carruthers, T. J. B., Orth, R. J., Dennison, W. C., Olyarnik, S., Calladine, A., Fourqurean, J. W., Heck, Jr., K. L., Hughes, A. R., Kendrick, G. A., Kenworthy, W. J., Short, F. T., and Williams, S. W., 2009. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 106: 12377–12381.Google Scholar
  104. Williams, S. L., 1990. Experimental studies of Caribbean seagrass bed development. Ecological Monographs, 60: 449–469.Google Scholar
  105. Yabe, T., Ishii, Y., Amano, Y., Koga, T., Hayashi, S., Nohara, S., and Tatsumoto, H., 2009. Green tide formed by free-floating Ulva spp. at Yatsu tidal flat, Japan. Limnology, 10: 239–245.Google Scholar
  106. Zaitsev, Y. P., 1992. Recent change in the trophic structure of the Black Sea. Fisheries Oceanography, 1: 180–189.Google Scholar

Copyright information

© Science Press, Ocean University of China and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, CAS, Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, CAS Experimental Station of Integrated Coastal Environment in Muping, Yantai Institute of Coastal Zone Research (YIC)Chinese Academy of SciencesYantaiP. R. China

Personalised recommendations