Journal of Ocean University of China

, Volume 13, Issue 6, pp 1005–1011 | Cite as

Toxic dinoflagellate Alexandrium tamarense induces oxidative stress and apoptosis in hepatopancreas of shrimp (Fenneropenaeus chinensis)

  • Zhongxiu Liang
  • Jian Li
  • Jitao Li
  • Zhijun Tan
  • Hai Ren
  • Fazhen Zhao


This study investigated the inductive effect of Alexandrium tamarense, a toxic dinoflagellate producing paralytic shellfish poison, on oxidative stress and apoptosis in hepatopancreas of Chinese shrimp, Fenneropenaeus chinensis. The individuals of F. chinensis were exposed to 200 and 1000 cells mL−1 of A. tamarense with their superoxide dismutase (SOD), glutathione S-transferase (GST) activities, malonyldialdehyde (MDA) concentration, and caspase gene (FcCasp) expression in hepatopancreas determined at 12, 24, 48, 72 and 96 h. In addition, apoptosis in hepatopancreas of F. chinensis at 96 h after exposure was determined through terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay. The hepatopancreatic SOD and GST activities of F. chinensis exposed to 1000 cells mL−1 of A. tamarense showed a bell-shaped response to exposure time. The hepatopancreatic MDA concentration of F. chinensis exposed to 1000 cells mL−1 of A. tamarense increased gradually from 48 to 96 h, and such a trend corresponded to the decrease of GST activity. The hepatopancreatic FcCasp transcript abundance of F. chinensis exposed to 1000 cells mL−1 of A. tamarense was positively and linearly correlated to MDA concentration. Results of TUNEL assay showed that exposure to 1000 cells mL−1 of A. tamarense induced apoptosis in the hepatopancreas of F. chinensis. Our study revealed that A. tamarense exposure influenced the antioxidative status of F. chinensis and caused lipid peroxidation and apoptosis in the hepatopancreas of shrimp.

Key words

Alexandrium tamarense oxidative stress apoptosis Fenneropenaeus chinensis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alonso-Rodríguez, R., and Páez-Osuna, F., 2003. Nutrients, phytoplankton and harmful algal blooms in shrimp ponds: A review with special reference to the situation in the Gulf of California. Aquaculture, 219: 317–336.CrossRefGoogle Scholar
  2. Armstrong, J. S., 2006. Mitochondrial membrane permeabilization: The sine qua non for cell death. Bioessays, 28: 253–260.CrossRefGoogle Scholar
  3. Buikema, A. L., Niederlehner, B. R., and Cairns, J. J., 1982. Biological monitoring, part IV-toxicity testing. Water Research, 16: 239–262.CrossRefGoogle Scholar
  4. Buttke, T. M. and Sandstrom, P. A., 1994. Oxidative stress as a mediator of apoptosis. Immunology Today, 15: 7–10.CrossRefGoogle Scholar
  5. Chen, Y., 2008. Toxic effects and mechanisms of Diarrhetic Shellfish Poisoning (DSP) and other HAB toxins on mammalian cells. Ph.D thesis. Chinese Academy of Sciences, 60–69.Google Scholar
  6. Costa, P. R., Botelho, M. J., and Lefebvre, K. A., 2010. Characterization of paralytic shellfish toxins in seawater and sardines (Sardina pilchardus) during blooms of Gymnodinium catenatum. Hydrobiologia, 655: 89–97.CrossRefGoogle Scholar
  7. Costa, P. R., Pereira, P., Guilherme, S., Barata, M., Nicolau, L., Santos, M. A., Pacheco, M., and Pousão-Ferreira, P., 2012. Biotransformation modulation and genotoxicity in white seabream upon exposure to paralytic shellfish toxins produced by Gymnodinium catenatum. Aquatic Toxicology, 106-107, 42–47.CrossRefGoogle Scholar
  8. Estrada, N., Romero, M. J., Campa-Córdova, A., Luna, A., and Ascencio, F., 2007. Effects of the toxic dinoflagellate, Gymnodinium catenatum on hydrolytic and antioxidant enzymes, in tissues of the giant lions-paw scallop Nodipecten subnodosus. Comparative Biochemistry and Physiology, 146: 502–510.Google Scholar
  9. Fleury, C., Mignotte, B., and Vayssiere, J. L., 2002. Mitochondrial reactive oxygen species in cell death signaling. Biochimie, 84: 131–141.CrossRefGoogle Scholar
  10. García, C., Bravo, M. C., Lagos, M., and Lagos, N., 2004. Paralytic shellfish poisoning: Post mortem analysis of tissue and body fluid samples from human victims in the patagonia fjords. Toxicon, 43: 149–158.CrossRefGoogle Scholar
  11. Gubbins, M. J., Eddy, F. B., Gallacher, S., and Stagg, R. M., 2000. Paralytic shellfish poisoning toxins induce xenobiotic metabolishing enzymes in Atlantic salmon (Salmo salar). Marine Environmental Research, 50: 479–483.CrossRefGoogle Scholar
  12. Jeon, J. K., Lee, J. S., Shim, W. J., Aarakawa, O., Takatani, T., Honda, S., and Noguchi, T., 2008. Changes in activity of hepatic xenobiotic-metabolizing enzymes of tiger puffer (Takifugu rubripes) exposed to paralytic shellfish poisoning toxins. Journal of Environmental Biology, 29: 599–603.Google Scholar
  13. Leu, J. H., Wang, H. C., Kou, G. H., and Lo, C. F., 2008. Penaeus monodon caspase is targeted by a white spot syndrome virus anti-apoptosis protein. Developmental and Comparative Immunology, 32: 476–486.CrossRefGoogle Scholar
  14. Li, Y. Q., Li, J., and Wang, Q. Y., 2006. The effects of dissolved oxygen concentration and stocking density on growth and non-specific immunity factors in Chinese shrimp, Fennero-penaeus chinensis. Aquaculture, 256: 608–616.CrossRefGoogle Scholar
  15. Lin, Y. S., 1996. Red tide caused by a marine toxic dinoflagellate, Alexandrium tamarensis (Lebour) Baleon, in shrimp ponds in Xiamen. Taiwan Strait, 15: 16–18 (in Chinese).Google Scholar
  16. Livingstone, D. R., 2001. Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms. Marine Pollution Bulletin, 42: 656–666.CrossRefGoogle Scholar
  17. Livingstone, D. R., 2003. Oxidative stress in aquatic organisms in relation to pollution and aquaculture. Revue De Medecine Veterinaire, 154: 427–430.Google Scholar
  18. Marisa, L. W., and Juan, F. M., 2005. Real-time PCR for mRNA quantitation. Biotechniques, 39: 75–85.CrossRefGoogle Scholar
  19. Ron, V. D. O., Jonny, B., and Nico, P. E. V., 2003. Fish bioaccumulation and biomarkers in environmental risk assessment: A review. Environmental Toxicology and Pharmacology, 13: 57–149.CrossRefGoogle Scholar
  20. Sakamoto, S., Sato, S., Ogata, T., and Kodama, M., 2000. Formation of intermediate conjugates in the reductive transformation of gonyautoxins to saxitoxins by thiolcompounds. Fisheries Science, 66: 136–141.CrossRefGoogle Scholar
  21. Sato, S., Sakai, R., and Kodama, M., 2000. Identification of thioether intermediates in the reductive transformation of gonyautoxins into saxitoxins by thiols. Bioorganic & Medicinal Chemistry Letters, 10: 1787–1789.CrossRefGoogle Scholar
  22. Skulachev, V. P., 1998. Cytochromec in the apoptotic and antioxidant cascades. Febs Letters, 423: 275–280.CrossRefGoogle Scholar
  23. Stephan, P., Claudia, W., Stephanie, W., Helge, S., and Harri, K., 2005. Activity and substrate specificity of cytosolic and microsomal glutathione S-transferase in Australian black tiger prawns (Penaeus monodon) after exposure to cyanobacterial toxins. Environmental Toxicology, 20: 301–307.CrossRefGoogle Scholar
  24. Su, H. M., Liao, I. C., and Chiang, Y. M., 1993. Mass mortality of prawn caused by Alexandrium tamarense blooming in a culture pond in southern Taiwan. In: Toxic Phytoplankton Blooms in the Sea. Smayda, T. J., and Shimizu, Y., eds., Elsevier Science Publishers B V, Amsterdam, 329–333.Google Scholar
  25. Tan, Z. J., Yan, T., Zhou, M. J., Li, J., Yu, R. C., and Wang, Y. F., 2002. The effects of Alexandrium tamarense on survival, growth and reproduction of Neomysis awatschensis. Acta Ecologica Sinica, 22: 1635–1639.Google Scholar
  26. Sun, Y., Yin, G., Zhang, J., Yu, H., and Wang, X., 2007. Bioaccumulation and ROS generation in liver of freshwater fish, goldfish Carassius auratus under HC Orange No.1 exposure. Environmental Toxicology, 22: 256–263.CrossRefGoogle Scholar
  27. Tan, Z. J., 2006. Toxic effects and its mechanism of dinoflagellate Alexandrium tamarense on perch Lateolabrax japonicus. Ph.D thesis. Chinese Academy of Sciences, 24–34.Google Scholar
  28. Tan, Z. J., Yan, T., and Yu, R. C., 2007. Transfer of paralytic shellfish toxins via marine food chains: A simulated experiment. Biomedical and Environmental Sciences, 20: 235–241.Google Scholar
  29. Thornberry, N. A., 1998. Caspases: Key mediators of apoptosis. Chemistry and Biology, 5: 97–103.CrossRefGoogle Scholar
  30. Trezado, C., Hidalgo, M. C., García-Gallego, M., Morales, A. E., Furne, M., Domezain, A., Domezain, J., and Sanz, A., 2006. Antioxidant enzymes and lipid peroxidation in sturgeon Acipenser naccarii and trout Oncorhynchus mykiss. A comparative study. Aquaculture, 254: 758–767.CrossRefGoogle Scholar
  31. Wang, W., and Ballatori, N., 1998. Endogenous glutathione conjugates: Occurrence and biological functions. Pharmacological Reviews, 50: 335–352.Google Scholar
  32. Wang, Y., Li, J., Liu, P., Li, J. T., Zhang, Z., Chang, Z. Q., He, Y. Y., and Liu, D. Y., 2011. The responsive expression of a caspase gene in Chinese shrimp Fenneropenaeus chinensis against pH stress. Aquaculture Research, 42: 1214–1230.CrossRefGoogle Scholar
  33. Winston, G. W., 1991. Oxidants and antioxidants in aquatic animals. Comparative Biochemistry and Physiology Part C Comparative Pharmacology, 100: 173–176.CrossRefGoogle Scholar
  34. Xu, W. N., Liu, W. B., and Liu, Z. P., 2009. Trichlorfon-induced apoptosis in hepatocyte primary cultures of Carassius auratus gibelio. Chemosphere, 77: 895–901.CrossRefGoogle Scholar
  35. Yan, T., Zhou, M. J., Fu, M., Yu, R. C., Wang, Y. F., and Li, J., 2003. Effects of the dinoflagellate Alexandrium tamarense on early development of the Scallop Argopectan irradians concentricus. Aquaculture, 217: 167–178.CrossRefGoogle Scholar
  36. Zhu, M. Y., 1993. Red tide in shrimp ponds along the Bohai Sea. In: Toxic Phytoplankton Blooms in the Sea. Smayda, T. J., and Shimizu, Y., eds., Elsevier Science Publishers B V, Amsterdam, 363–367.Google Scholar

Copyright information

© Science Press, Ocean University of China and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Zhongxiu Liang
    • 1
    • 2
  • Jian Li
    • 2
  • Jitao Li
    • 2
  • Zhijun Tan
    • 2
  • Hai Ren
    • 1
  • Fazhen Zhao
    • 2
  1. 1.College of Fisheries and Life ScienceShanghai Ocean UniversityShanghaiP.R. China
  2. 2.Key Laboratory of Sustainable Development of Marine Fisheries of Ministry of Agriculture; Yellow Sea Fisheries Research InstituteChinese Academy of Fishery SciencesQingdaoP. R. China

Personalised recommendations