Skip to main content
Log in

Modulation of tropical cyclogenesis over the South China Sea by ENSO Modoki during boreal summer

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

This study examines the modulation of tropical cyclogenesis over the South China Sea (SCS) by the El Niño-Southern Oscillation (ENSO) Modoki during the boreal summer. Results reveal that there were more tropical cyclones (TCs) formed over the SCS during central Pacific warming years and less TC frequency during central Pacific cooling years. How different environmental factors (including low-level relative vorticity, mid-level relative humidity, vertical wind shear, and potential intensity) contribute to this influence is investigated, using a genesis potential (GP) index developed by Emanuel and Nolan. Composite anomalies of the GP index are produced for central Pacific warming and cooling years separately, which could account for the changes of TC frequency over the SCS in different ENSO Modoki phases. The degree of contribution by each factor is determined quantitatively by producing composites of modified indices in which only one of the contributing factors varies, with the others set to climatology. The results suggest that the vertical wind shear and low-level relative vorticity, which are associated with the ENSO Modoki-induced anomalous circulations in Matsuno-Gill patterns, make the largest contributions to the ENSO Modoki modulation of tropical cyclogenesis over the SCS as implied by the GP index. These results highlight the important roles of dynamic factors in the modulation of TC frequency over the SCS by the ENSO Modoki during the boreal summer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P. P., Janowiak, J., Rudolf, B., Schneider, U., Curtis, S., Bolvin, D., Gruber, A., Susskind, J., Arkin, P., and Nelkin, E., 2003. The Version 2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979-present). Journal of Hydrometeorology, 4: 1147–1167.

    Article  Google Scholar 

  • Ashok, K., and Yamagata, T., 2009: Climate change: The El Niño with a difference. Nature, 461: 481–484.

    Article  Google Scholar 

  • Ashok, K., Behera, S. K., Rao, S. A., Weng, H., and Yamagata, T., 2007. El Niño Modoki and its possible teleconnection. Journal of Geophysical Research, 112, C11007, DOI: 10.1029/2006JC003.

    Article  Google Scholar 

  • Bister, M., and Emanuel, K. A., 1998. Dissipative heating and hurricane intensity. Meteorology and Atmospheric Physics, 52: 233–240.

    Article  Google Scholar 

  • Black, M. L., Gamache, J. E., Marks, F. D., Samsury, C. E., and Willoughby, H. E., 2002. Eastern Pacific Hurricanes Jimena of 1991 and Olivia of 1994: The effect of vertical shear on structure and intensity. Monthly Weather Review, 130: 2291–2312.

    Article  Google Scholar 

  • Cai, W., and Cowan, T., 2009. La Niño Modoki impacts Australia autumn rainfall variability. Geophysical Research Letters, 36, L12805, DOI: 10.1029/2009GL037885.

    Article  Google Scholar 

  • Camargo, S. J., Emanuel, K. A., and Sobel, A. H., 2007a. Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis. Journal of Climate, 20: 4819–4834.

    Article  Google Scholar 

  • Camargo, S. J., Sobel, A. H., Barnston, A. G., and Emanuel, K. A., 2007b. Tropical cyclone genesis potential index in climate models. Tellus A, 59(4): 428–443.

    Article  Google Scholar 

  • Camargo, S. J., Sobel, A. H., Barnston, A. G., and Klotzbach, P. J., 2010. The influence of natural climate variability on tropical cyclones, and seasonal forecasts on tropical cyclone activity. Global Perspectives on Tropical Cyclones: From Science to Mitigation. Chan, J. C. L., and Kepert, J. D., eds., World Scientific Series on Asia-Pacific Weather and Climate, Vol. 4, World Scientific Publishing, 325–360.

    Chapter  Google Scholar 

  • Camargo, S. J., Wheeler, M. C., and Sobel, A. H., 2009. Diagnosis of the MJO modulation of tropical cyclogenesis using an empirical index. Journal of Atmospheric Sciences, 66: 3061–3074.

    Article  Google Scholar 

  • Chan, J. C. L., 2000. Tropical cyclones activity over the western North Pacific associated with El Niño and La Niña events. Journal of Climate, 13: 2960–2972.

    Article  Google Scholar 

  • Chand, S. S., and Walsh, K. J. E., 2010. The influence of the Madden-Julian oscillation on tropical cyclone activity in the Fiji region. Journal of Climate, 23: 868–886.

    Article  Google Scholar 

  • Chen, G., 2011. How does shifting Pacific Ocean warming modulate on tropical cyclone frequency over the South China Sea? Journal of Climate, 24: 4695–4700.

    Article  Google Scholar 

  • Chen, G., and Tam, C. Y., 2010. Different impacts of two kinds of Pacific Ocean warming on tropical cyclone frequency over the western North Pacific. Geophysical Research Letters, 37, L01803, DOI: 10.1029/2009GL041708.

    Google Scholar 

  • Chen, J. P., Wu, R. G., and Wen, Z. P., 2012. Contribution of South China Sea tropical cyclones to an increase in southern China summer rainfall around 1993. Advances in Atmospheric Sciences, 29(3): 585–598.

    Article  Google Scholar 

  • Chen, T. C., Wang, S. Y., and Yen, M. C., 2006. Interannual variation of tropical cyclone activity over the western North Pacific. Journal of Climate, 19: 5709–5720.

    Article  Google Scholar 

  • Chia, H. H., and Ropelewski, C. F., 2002. The interannual variability in the genesis location of tropical cyclones in the northwest Pacific. Journal of Climate, 15: 2934–2944.

    Article  Google Scholar 

  • Dowdy, A. J., Qi, L., Jones, D., Ramsay, H., Fawcett, R., and Kuleshov, Y., 2012. Tropical cyclone climatology of the South Pacific Ocean and its relationship to El Niño-Southern Oscillation. Journal of Climate, 25: 6108–6122.

    Article  Google Scholar 

  • Du, Y., Yang, L., and Xie, S.-P., 2011. Tropical Indian ocean influence on Northwest Pacific tropical cyclones in summer following strong El Niño. Journal of Climate, 24: 315–322.

    Article  Google Scholar 

  • Elsberry, R. L., and Jefferies, R. A., 1996. Vertical wind shear influences on tropical cyclone formation and intensification during TCM-92 and TCM-93. Monthly Weather Review, 124: 1374–1387.

    Article  Google Scholar 

  • Emanuel, K. A., 1995. Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. Journal of Atmospheric Sciences, 52: 3669–3976.

    Google Scholar 

  • Emanuel, K. A., and Nolan, D. S., 2004. Tropical cyclone activity and global climate. 26th Conference on Hurricane and Tropical Meteorology, American Meteorological Society, Miami, FL, 240–241.

    Google Scholar 

  • Evan, A. T., and Camargo, S. J., 2011. A climatology of Arabian Sea cyclonic storms. Journal of Climate, 24: 140–158.

    Article  Google Scholar 

  • Gallina, G. M., and Velden, C. S., 2002. Environmental vertical wind shear and tropical cyclone intensity change utilizing enhanced satellite derived wind information. 25th Conference on Hurricanes and Tropical Meteorology, American Meteorological Society, San Diego, CA.

    Google Scholar 

  • Gill, A. E., 1980. Some simple solution for heat-induced tropical circulation. Quarterly Journal of the Royal Meteorological Society, 106: 447–462.

    Article  Google Scholar 

  • Goh, Z. C., and Chan, J. C. L., 2010. Interannual and interdecadal variations of tropical cyclone activity in the South China Sea. International Journal of Climatology, 30: 827–843.

    Google Scholar 

  • Gray, W. M., 1968. Global view of the origin of tropical disturbances and storms. Monthly Weather Review, 96: 669–700.

    Article  Google Scholar 

  • Hong, C. C., Li, Y. H., Li, T., and Lee, M. Y., 2011. Impacts of central Pacific and eastern Pacific El Niños on tropical cyclone tracks over the western North Pacific. Geophysical Research Letters, 38, L16712, DOI: 10.1029/2011GL048821.

    Google Scholar 

  • Huang, Q., and Guan, Y. P., 2012. Does the Asian monsoon modulate tropical cyclone activity over the South China Sea? Chinese Journal of Oceanology and Limnology, 30(6): 960–965.

    Article  Google Scholar 

  • Jiang, X., Zhao, M., and Waliser, D. E., 2012. Modulation of tropical cyclones over the Eastern Pacific by the intraseasonal variability simulated in an AGCM. Journal of Climate, 25: 6524–6538.

    Article  Google Scholar 

  • Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Leetmaa, A., Reynolds, R., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Repelewski, C., Wang, J., Jenne, R., and Joseph, D., 1996. The NCEP/NCAR 40-Year Reanalysis Project. Bulletin of the American Meteorological Society, 77: 437–471.

    Article  Google Scholar 

  • Kao, H. Y., and Yu, J. Y., 2009. Contrasting eastern Pacific and central Pacific types of ENSO. Journal of Climate, 22: 615–631.

    Article  Google Scholar 

  • Kim, H. M., Webster, P. J., and Curry, J. A., 2009. Impact of shifting patterns of Pacific Ocean warming on North Atlantic tropical cyclones. Science, 325: 77–80.

    Article  Google Scholar 

  • Kim, H. M., Webster, P. J., and Curry, J. A., 2011. Modulation of north Pacific tropical cyclone activity by three phases of ENSO. Journal of Climate, 24: 1839–1849.

    Article  Google Scholar 

  • Kug, J. S., Jin, F. F., and An, S. I., 2009. Two types of El Niño events: Cold-tongue El Niño and warm-pool El Niño. Journal of Climate, 22: 1499–1515.

    Article  Google Scholar 

  • Larkin, N. K., and Harrison, D. E., 2005. Global seasonal temperature and precipitation anomalies during El Niño autumn and winter. Geophysical Research Letters, 32, L16705, DOI: 10.1029/2005GL022860.

    Article  Google Scholar 

  • Li, R. C. Y., and Zhou, W., 2012. Changes in western Pacific tropical cyclones associated with the El Niño-Southern Oscillation cycle. Journal of Climate, 25: 5864–5878.

    Article  Google Scholar 

  • Liebmann, B., and Smith, C. A., 1996. Description of a complete (interpolated) outgoing longwave radiation dataset. Bulletin of the American Meteorological Society, 77: 1275–1277.

    Google Scholar 

  • Lin, Y.-L., and Lee, C.-S., 2011. An analysis of tropical cyclone formations in the South China Sea during the late season. Monthly Weather Review, 139: 2748–2760.

    Article  Google Scholar 

  • Matsuno, T., 1966. Quasi-geostrophic motions in the equatorial area. Journal of the Meteorological Society of Japan, 44: 25–43.

    Google Scholar 

  • McBride, J. L., and Zehr, R. M., 1981. Observational analysis of tropical cyclone formation. Part II: Comparison of non-developing versus developing systems. Journal of Atmospheric Sciences, 38: 1132–1151.

    Article  Google Scholar 

  • McGregor, G. R., 1995. The tropical cyclone hazard over the South China Sea, 1970–1989. Applied Geography, 15(1): 35–52.

    Article  Google Scholar 

  • Pradhan, P. K., Preethi, B., Ashok, K., Krishnan, R., and Sahai, A. K., 2011. Modoki, Indian Ocean dipole, and western North Pacific typhoons: Possible implications for extreme events. Journal of Geophysical Research, 116, D18108, DOI: 10.1029/2011JD015666.

    Article  Google Scholar 

  • Rasmusson, E. M., and Carpenter, T. H., 1982. Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation-El Niño. Monthly Weather Review, 110: 354–384.

    Article  Google Scholar 

  • Ren, H. L., and Jin, F. F., 2011. Niño indices for two types of ENSO. Geophysical Research Letters, 38, L04704, DOI: 10.1029/2010GL046031.

    Article  Google Scholar 

  • Ritchie, E. A., 2002. Topic 1.2: Environmental effects. Topic Chairman and Rapporteur Reports of the Fifth WMO International Workshop on Tropical Cyclones (IWTC-V), WMO Tech. Doc. WMO/TD 1136, WMO, Geneva, Switzerland.

    Google Scholar 

  • Shinoda, T., Hurlburt, H. E., and Metzger, E. J., 2011. Anomalous tropical ocean circulation associated with La Niña Modoki. Journal of Geophysical Research, 116, DOI: 10.1029/2011JC007304.

  • Smith, T. M., and Reynolds, R. W., 2004. Improved extended reconstruction of SST (1854–1997). Journal of Climate, 17: 2466–2477.

    Article  Google Scholar 

  • Smith, T. M., Reynolds, R. W., Peterson, T. C., and Lawrimore, J., 2008. Improvements to NOAA’s historical merged landocean surface temperature analysis (1880–2006). Journal of Climate, 21: 2283–2296.

    Article  Google Scholar 

  • Tuleya, R. E., and Kurihara, Y., 1981. A numerical study on the effects of environmental flow on tropical storm genesis. Monthly Weather Review, 109: 2487–2506.

    Article  Google Scholar 

  • Vecchi, G. A., and Soden, B. J., 2007. Effect of remote sea surface temperature change on tropical cyclone potential intensity. Nature, 450: 1066–1070.

    Article  Google Scholar 

  • Wang, B., and Chan, J. C. L., 2002. How strong ENSO events affect tropical storm activity over the western North pacific. Journal of Climate, 15: 1643–1658.

    Article  Google Scholar 

  • Wang, G. H., Ling, Z., and Wang, C. Z., 2009. Influence of tropical cyclones on seasonal ocean circulation in the South China Sea. Journal of Geophysical Research, 114, C10022, DOI: 10.1029/2009JC005302.

    Article  Google Scholar 

  • Wang, G. H., Su, J., Ding, Y., and Chen, D., 2007a. Tropical cyclone genesis over the South China Sea. Journal of Marine Systems, 68(3): 318–326.

    Article  Google Scholar 

  • Wang, G. H., Wang, H., and Qi, Y. Q., 2007b. Seasonal variability of tropical cyclones generated over the South China Sea. Acta Oceanologica Sinica, 26(4): 20–28.

    Google Scholar 

  • Wang, L., and Pan, X., 2012. Diagnosis of seasonal variation of tropical cyclogenesis over the South China Sea using a genesis potential index. Journal of Ocean University of China, 11(3): 267–278.

    Article  Google Scholar 

  • Wang, L., Fung, C. H., and Lau, K. H., 2007c. The upper ocean thermal structure and the genesis locations of tropical cyclones in the South China Sea. Journal of Ocean University of China, 6(2): 125–131.

    Article  Google Scholar 

  • Wang, L., Huang, R., and Wu, R., 2013. Interdecadal variability in tropical cyclone frequency over the South China Sea and its association with the Indian Ocean sea surface temperature, Geophysical Research Letters, 40: 768–771, DOI: 10.1002/grl.50171.

    Article  Google Scholar 

  • Wang, L., Lau, K. H., Fung, C. H., and Gan, J. P., 2007d. The relative vorticity of ocean surface winds from the QuikSCAT satellite and its effects on the geneses of tropical cyclones in the South China Sea. Tellus A, 59: 562–569.

    Article  Google Scholar 

  • Wang, L., Lau, K. H., Zhang, Q. H., and Fung, C. H., 2008. Observation of non-developing and developing tropical disturbances over the South China Sea using SSM/I satellite. Geophysical Research Letters, 35, L10802, DOI: 10.1029/ 2008GL033446.

    Article  Google Scholar 

  • Wang, L., Zhang, Q.W., and Li, W. B., 2012a. Diagnosis of the ENSO modulation of tropical cyclogenesis over the southern South China Sea using a genesis potential index. Acta Oceanologica Sinica, 31(5): 54–68.

    Article  Google Scholar 

  • Wang, X., Zhou, W., Li, C., and Wang, D., 2012b. Effects of the East Asian summer monsoon on tropical cyclone genesis over the South China Sea on an interdecadal time scale. Advances in Atmospheric Sciences, 29(2): 249–262.

    Article  Google Scholar 

  • Wedland, W. M., 1977. Tropical storm frequencies related to sea surface temperatures. Journal of Applied Meteorology, 16: 477–481.

    Article  Google Scholar 

  • Wu, L., Wen, Z., Huang, R., and Wu, R., 2012. Possible linkage between the monsoon trough variability and the tropical cyclone activity over the western North Pacific. Monthly Weather Review, 140: 140–150.

    Article  Google Scholar 

  • Yan, Y. F., Qi, Y. Q., and Zhou, W., 2012. Variability of tropical cyclone occurrence date in the South China Sea and its relationship with SST warming. Dynamics of Atmospheres and Oceans, 55: 45–59.

    Article  Google Scholar 

  • Yanase, W., Satoh, M., Taniguchi, H., and Fujinami, H., 2012. Seasonal and intraseasonal modulation of tropical cyclogenesis environment over the Bay of Bengal during the Extended Summer Monsoon. Journal of Climate, 25: 2914–2930.

    Article  Google Scholar 

  • Yang, L., Du, Y., Xie, S. P., and Wang, D. X., 2012. An interdecadal change of tropical cyclone activity in the South China Sea in early 1990s. Chinese Journal of Oceanology and Limnology, 30(6): 953–959.

    Article  Google Scholar 

  • Yeh, S. W., Kug, J. S., Dewitte, B., Kwon, M. H., and Kirtman, B. P., 2009. El Niño in a changing climate. Nature, 461: 511–514, DOI: 10.1038/nature08316.

    Article  Google Scholar 

  • Yokoi, S., Takayabu, Y. N., and Chan, J. C. L., 2009. Tropical cyclone genesis frequency over the western North Pacific simulated in medium-resolution coupled general circulation models. Climate Dynamics, 33: 665–683.

    Article  Google Scholar 

  • Zehr, R. M., 1992. Tropical Cyclogenesis in the Western North Pacific. NOAA Tech. Rep. NESDIS 61, 181pp.

    Google Scholar 

  • Zhan, R., Wang, Y., and Lei, X., 2011. Contributions of ENSO and East Indian Ocean SSTA to the interannual variability of Northwest Pacific tropical cyclone frequency. Journal of Climate, 24: 509–521.

    Article  Google Scholar 

  • Zhang, C., Yao, H. L., Zhang, Q. H., and Wang, L., 2012. Prediction of tropical disturbance development over the South China Sea using SSM/I data. Journal of Tropical Meteorology, 18(2): 242–248.

    Google Scholar 

  • Zhang, Y., Wang, H. J., Sun, J., and Drange, H., 2010. Changes in the tropical cyclone genesis potential index over the Western North Pacific in the SRES A2 scenario. Advances in Atmospheric Sciences, 27: 1246–1258.

    Article  Google Scholar 

  • Zuki, Z. M., and Lupo, A. R., 2008. Interannual variability of tropical cyclone activity in the southern South China Sea. Journal of Geophysical Research, 113, D06106. DOI: 10.1029/ 2007JD009218.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Guo, Z. Modulation of tropical cyclogenesis over the South China Sea by ENSO Modoki during boreal summer. J. Ocean Univ. China 13, 223–235 (2014). https://doi.org/10.1007/s11802-014-2128-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-014-2128-1

Key words

Navigation